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SECTION 1
FREE RIGID GUN TUBE WITH ECCENTRIC BREECH AND
DYNAMICALLY UNBALANCED PROJECTILE

1.1 INTRODUCTION

The motion of a free rigid gun in a gravitationless environment
is investigated in this section. Also, the force and the moment that the
projectile exerts on the gun are derived. Gravity, acting on a free gun,
would cause the center of mass of the system to descend with constant
acceleration g. The supports of an actual gun prevent a free fall of the
system. Consequently, it is questionable whether inclusion of gravity in
the analysis would make the mathematical model more realistic. Like gravity,
the resistance of air in the tube ahead of the projectile is an external
force. Its magnitude can be calculated by gas dynamics.1 However, in this
chapter, the air resistance on the projectile is disregarded. The system,
as it is conceived, accordingly has no external forces acting on it. Since
the relative motion of the projectile with respect to the tube is assumed
to be giveh, the motion of the system is determined by the laws of conserva-

tion of rectilinear and angular momentum.

1.2 TERMINOLOGY AND NOTATIONS

The gun tube and the breech block together form a rigid body
called the "gun." The system consists of the gun and the projectile in the
tube. The point on the geometric axis of the projectile that lies closest
to the center of mass of the projectile is called the "geometric center' of
the projectile. The location of the center of mass of the projectile at the
initial instant is called the "starting point of the center of mass of the
projectile."

A bar over a letter denotes a vector. A caret over a letter
denotes a unit vector. A dot over a letter denotes the derivative with
respect to time t. Ignition occurs at the instant t = 0. The following
notations are illustrated by Figure 1.

Point O is the center of mass of the whole system.

Point P is the center of mass of the gun.

Iz, Courant and k. Friedrichs, "Supersonic Flow and Shock Waves (U),"
Chap. III, Interscience Publishers, New York, 1948.
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Point Q is the center of mass of the projectile at time t.

Point Q' is the geometric conter of the projectile at time t.

Point QO is tho starting point of the center of mass of the
projectile,

Point QO' is the initial location of point Q'.

F denotes a Galilean reference frame; e.g., the earth.

X,Y,z are rectangular coordinates fixed in frame F.

i*,5',K' arc unit vectors along the axes X,Y,2.

?,3,§ are unit vectors along the principal axes of inertia of the
gun through point P.

a,0,c are unit vectors along the principal axes of inertia of the
projectile through point Q. Nonc of them its necessarily parallel to the
axis of the tube.

BO’BO’EO are unit vectors along the principal axes of inertia of
the projectile through point QO, when the projectile is in the starting
position.

U is a unit vector along the axis of the tube,

- . -
RO is the vector OP.

R ->
1 is the vector 0Q,

ol

is the vector PQ; ¥ = W] - ﬂb.

=1

. -»
is the vector PQO'.

is the vector QTQ.

1| o of

is the vector QOTQO.

Fed

sois the distance that the projectile has traveled relative to the
tube at time t,

X is the angle through which the projectile has turned relative
to the tube at time t.

w = X is the spin (angulay velocity) of the projectile relative
to the tube at time t,

M is the mass of the gun,

m is the mass of the projectile.

BERPIL
respect to its center of mass P. i

arc the principal moments of inertia of thoe gun with

il’iZ’iz are the principal moments of inertia of the projectile

with respect to its center of mass Q.




W is the angular velocity of the gun velative to frame F,

w is the angular velocity of the projectile relative to frame F,

W W, . kWL
»W, W, are components of w, defined by w = aw, + bw, + cw..

YWYy P y 1 2 3

Wl,wz, 5 are components of W, defined by W

- . - _ o "
T'y»T,, ¥, drC components of r, defincd by r = ir) +jr, + krs.

XO,YO,Z0 are the (x,y,z) coordinates of the center of mass P
- 4 e o= T ™ P
of the gun; i.e., R0 i, Xo + YO + kK 20. _ o
€110,,05 are components of the vector e, defined by e = ie1 +
A A
e, + kes.
o,B,y are direction cosines of the axis of the tube, defined by

V= 1o+ 38 ¢ ky.

€1,Cy,€; are components of vector FO‘ dofined by &, = e, +
Fa3 A
je, + kts.

A A A
R,i,mi,ni are direction cosines of vectors i, j, k with respect

to axes (x,y,z), defined by the matrix

A A

i ik ke

-
P-4

1 nl1 n1
3 'y ,
i 5 m, n,
k 23 m3 n3

A

A A
ai,bi,ci are direction cosines of vectors (a,b,c), defined by the

matrix
1 j k
a ay a, i
1) bl b2 hS
c ¢ €y Cq

Y
ai’Bi’Yi are direction cosines of vectors (a.

J,bo,co), defined by

the matrix

i 5 k

% 4 B

by @, By Y,

80 as 85 Y3
10
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H is the angular momentwm of the gun about point 0.

h' is tho angular momentum of the projectile about point O,

E l’o(t) is the pressure of the gases on the breoch.

: Pl(t) is the pressure of the gases on the base of the projoctile.
A is the cross=scctional area of the bore.

S~

' is the vesultant force exerted by the projectile on the tube.

n M is the moment about the center of mass of the gun of the

F contact forces that the projectile exexts on the tube. k
M' is the moment about the center of muss of the projectile of

the contact forces that the tube exerts on the projectile.

g is the scalar acceleration of gravity.

F g is the vector accoeleration of gravity (directed vertically

downward) .

R is the resisting force of the air ahcad of the projectile
5 1

E o= *h.‘.'.'.‘-..,.
2 M+
5 M, M,,M; arc components of vector M, defined by M = iMl + 3512 +
kMS' B o X
? N N are o yhnonte of setor F ’7: T = iF 1 +
E \ ll"z’FS e components of vector F, defined by | “l + le
! kpz.
. f = 'i‘f‘l +5F, + ﬁt'_,, is the correction to force F to account for
L unbalance of the projectile.
h 1.3 CONSERVATION OF MOMENTUM

Since there are no external forces, the center of mass O of the
system remains fixed in Frame F. Consequently, in this section, O is taken

to be the origin of coordinates (x,y,z). At time t, the center ot mass Q of

ﬁ the projectile lies at point El = EO + T (Figure 1). Since the origin 0 is
the center of mass of the system, and since momentum of the gases is

5 neglected,

N i+ mE s 0

- MR, + le ( (1.1)

.

i Consequently,

N _

MRO + m(RO + 1) =0




Therefore,
= -mr = _ Mr M=
Ro“w+n ™1 "F+m- " mho (1.2)

Equation (1.2) signifies that the vectors RO
Consequently, point O lies on the line PQ. Equation (1.2) yields

and ﬁi are collinear.

- = ﬁ . _Mm
0 0 1 1 M+m

-—_—
TXT (1.3)

Equation (1.3) will be used later.
The direction cosines of vectors (i,},ﬁ) with respect to axes

(x,y,z} are (li,mi,ni) (see Notations). Also

Equation {1.2) yields

Ry = i~ m(’i\rl * Sr2 * ‘A‘rs)
Also,

i-= Eli' + mlﬁ' + nlﬁ'

3 = lzi' + m23‘ + nzﬁ'

k = 233' + msf' + nsﬁ'
Consequently,

X * M-—:—nn?(rlll + r222 + rsﬂ,s)

12
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= _-m_
YO ol v m(rlm1 + r2m2 + r3m3)

- M
0 M+nmn

)
1

(
(rln1 +r,n, ¢+ rsns) (1.4)

1.4 ANGULAR VELOCITY OF THE PROJECTILE
The absolute angular velocity of the projectile is

w = aw, + bw, + Ccw

Let (3',3',3’) be an orthogonal triad of unit vectors, such that e = G,
where v is the unit vector along the axis of the tube. Then w may be written

alternatively as follows:

o= atw ! Yo ! Dy o
w aw1+8w2 +Cw3

The angular velocity of the projectile relative to the tube is a
vector of magnitude w = X that is coaxial with the tube. The variable w is
the spin; it is regarded as a known function of t. Accordingly, the cr

component of the absolute angular velocity of the projectile is

w.'=w W

where W is the angular velocity of the gun. The a' and b' components of the
absolute angular velocity of the projectile are the same as those of the tube,
since balloting is excluded. Accordingly,

'=.«'._. '=A'.._
Wy a W wz b W

*
Consequently ,

—_— A

— AN N -_— "~noA —— ~
w=a'a®' * W+Db'b' ¢« W+ c'c'" « W+ c'y

* ~ g~ -— . ~ ~ - . ~ —,
The notation a'a' + W, et:., is short for a'(a'+W). Since a' « Wis a
s W denotes multiplieation of vector a' by the scalar a' + W.

scalar, a'a’

13
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However, the following relationship is an identity:

L A A — -~

i a'a' * W+b'd' s Wrere! «W=W

Also, c' = v, Consequently,

’!' we=W+ W (1.5)
i Since,
. Woaw, +bW.+ oW, W, =W.a =Web;w =wec
| = an 2t My ¥y 43 W= > V3 ¢
Also,
\ 3= fa, +Ja, + Rag
i b = 1b1 + Jb2 + kb3
) ¢ =ic, + jc, + kc3
; Consequently, Eq. (1.5) yields
3 Wy ® alwl + azwz + a3w3 + (aa1 + Ba2 + Yas)w
‘
¥
" wz—b1W1+b2W2+b3W3+(ab1+Bb2+Yb3)w
Wo = clwl + c2w2 + c3W3 + (acl + Bc2 + ch)w (1.6)
{ 1.5 THE VECTORS a,b,c,t
N So far, the vectors ;, S, 2, whose componer- - ‘ppear in Eq. (1.6),
are undetermined. The displacement vector field of a .igid body that under-
i goes a rotation about an axis that is oblique to the coordinate ax- 3 is
d derived in Appendix A. Vectors a, b, ¢ are imbedded in the projectile and

14
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" move with it. Accordingly, Eq. (A-2) in Appendix A applies to them. The

vector p in Eq. (A-2) may be given various special designations, If p =
A ~ *

a

~

,a=R Ifp-= 50, b = R, and likewise for ¢, and c. Consequently ,

0 0

~

a

\)xaosinx + VY e ao(l - cosy) + a,cosx

o
n

\A)xgosinx o0 . 130(1 - cosy) + b cosY

0

A

\)xeosinx + VY 80(1 - cosy) + Eocosx (1.7)

0>
n

It can be shown directly from Eq. (1.7) that (3,1';,3) are an orthogonal triad
of unit vectors, as they should be. Equation (1.7) also yields

~ A A ~ A
tveb=veb, ; Vec=Ve

~ A
Ve = .
a A% ao, c

(1.8)

Equation (1.8) reflects the fact that a rotation of a body about an axis does
not change the angle between the axis and any line that is scribed in the

- body.
B The direction cosines of the vectors (QO,GO,EO) are given by the
following matrix:

i 3 K
g 3w 4 BoM
g b % B M
B ¢ % B3 V3
K S a8 ¥ (1.9)
b The direction cosines in Eq. (1.9) are known constunts. Equations (1.7) and
(1.9) yield
’ *
4 See footnote on page 13 and Appendix C.

15



= f[(BYl - ¥YBy)siny + o(aa, + B8, + YY) (1 - cosy) + a cosy)

1
+3 [Cvoy - ay)siny + B(aa, + BB, + Yy )(1 - cosx) + B, cosx]

k (a8, - Ba)siny + y(ao, + BB, * YY)(1 - cosx) + v cosx]

By, - YB,)sinx + afon, + 88, *+ YY) (1 - cosy) + a,c0sx]

+3 [Cya, - ay,)siny + B(oa, + BB, + YY,)(1 - cosX) + B,cosx]

k KaBZ - Baz)Sinx + y(aaz + 882 + sz)(l - cosy) + yzcosx]

i [{(BY; - YRg)sinx + a(aa, + B8, + YY;)(1 - cosy) + o.cosy]

3

5 (v, - oyg)siny + Blao, + BBL + YY5) (1 - cosy) + BSCOSX]
f[(aB3 - Bas)sinx + Y(aa3 + 683 + sz)(l - cosy) + Y3COSX] (1.10)

Eguftion (1.10) determines the direction cosines (ai,bi,ci) of vectors
(a,b,c) as functions of t.

If p is sit equal to Eb in Eq. (A-2), R = €. Since Eb is
perpendicular to v, v eO=O.Consequent1y, by Eq. (A-2),

€ Gbesinx + Ebcosx (1.11)

Since Eb « v =0, it follows from Eq. (1.11) that € * v = 0, as it should be.
Also, Eq. (1.11) yields

T s T = E.E =e?
T 0 0

where € is the eccentricity of the projectile,

16
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- 1.6 THE VECTOR PRODUCT T x T

'::: The vector product T x T occurs in the expression for the angular
. momentuna of the system about point O. By Figure 1,

t

) T=e6+9Vs+ € (1.13)

Hence,

2 =2 2 A KA
- - - - Tze+ Vs 4+ VSt E

— A
In the reference frame of the gun, e and v are constant vectors. Conse-

: quently,

N E=Wx3;0=l_x3 (1.14)

~

q

" Therefore,

7'_: F=Wxe+Wxus +08 + € (1.15)

! Since EO =W x —0, Eq. (1.11) yields (see footnote, page 13)

\ e=wW - EgSinX - g4V ° Wsiny + wv x €4COSX * W x €C0SX - weysiny (1.16)

Equations (1.11), (1.13), (1.15), and (1.16) yield

T=0+VUs+vx c—osinx + Eocosx (1.17)

- .._ —— — — ~ /\. AN —_— -_— -, N
r=er+lxvs+\)s+vw-eosinx-€0v' siny ;

:;‘ . + WV X gpcosY + W x €oCOSX - we,siny (1.18)

. Equation (1.18) may be written as follows:

: 2. — -— Ao A~ - —

q T=WXT+ VS + WX €9COSX - weosinx (1.19)

- 17
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Hence (see footnote, page 13J,

e TXTeMrl-TT W4T XVS+ wr EbCOSX-wE6? . VcOSsX £
8§

= - wr x Ebsinx (1.20)

N with -
: r=1r1+Jr2+kr3,w=1W1+JW2+kW3,

<>
[}

jo + jB + ky , and € = ig; + je, + ke3

Eq. (1.20) yields

& - =_° 2 2 _ _ ) .

- rXT= 1{(r2 + 1, W, - rlrzwz rlrsw3 4 (yr2 Brs)s

2 + [a(rze2 + rses) - el(Br2 + er)]wcosx

t: - (r,e, - r,& )uwsiny} + J{-r.r N+ (v 2.y 2)W

N 2°3 7 7372 20 W U TS W
N - rzrsw3 + (ur3 - le)s + [B(rse3 + rlel)

t
]

ez(yr3 + arl)]wcosx - (rse1 - rles)wsinx}

Y

Mt N B4 ACEOASIS
BN ¥ W

+

~ 2 2 e
k{-r3r1w1 - rsrzw2 +(r) 1, Wy + (Br1 - arz)s

fi + [y(re) + T,€)) - eslor, + Brz)]mcosx

X |

ff - (e, - rzel)wsinx} (1.21)
&
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1.7 ANGULAR MOMENTUM
The angular momentum of the gun with respect to a nonrotating
observer at point P is2

2 2
11N+ LW, + fdsw3

Consequently, by Eq. (B-3) in Appendix B, the angular momentum of the gun
“with respect to pointo0is - -

A

H = iIIW1 + jIZW2 + k13W3 + MRO X R0 (1.22)

Similarly, the angular momentum of the projectile about point O is

L]
~ A

h = ai,

wl + b12w2 + c13w3 + mR, xR

1 1 (1.23)

A

The vectors a, b, ¢ are resolved into f, 3, k components by the e uations,
P y q

a = ial + §a2 + ﬁas

b = ibl + ﬁbz . Eb3

¢ =ic + ﬁcz + Keg
Consequently,

h = 1(a111w1 + blxzw2 + clxsws) + J(azllw1 + b212w2 + c213w3)

+ k(as1lw1 + b312w2 + c313w3) + le X R1 (1.24)

Consequently, in view of Eqs. (1.3) and (1.22),

2H. L. Langhaar and A. P. Boresi, Engineering Mechanics -Dynamics (U), MceGraw-

Hill, New York, 1959, Art. 15-10.
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+ h= i(Ilw1 + alilw1 + blizw2 + c113w3)

+ J(IZW2 +oayiw, 4 b212w2 + c213w3)

A . . s L e
+ k(ISW3 + a311w1 + b312w2 + c313w3) + Myt Xr (1.25)
The term r X T is expressed in the form (-)i + (-)j + (-)k by

Eq. (1.21). Consequently, Eq. (1.25) represents H + h in the form
Heh=3A+3B+kC | : (1.26)

By the law of conservation of angular momentum, H + h is a constant vector.
However, in general, (A,B,C) are not constants, since the gun moves and
accordingly (i,s,ﬁ) are time-dependent vectors. 'The constant vectors (f',ﬁ',

ﬁ') may be introduced by means of the equations,

i= Lll' + mlj' + nlk’
3 = 223' + mzﬁ' + nzﬁ'
* = T T T
k 231 +mgjt o+ n3k

Thus, H + h is expressed as follows:

- = & 2 o
H+h-= 1'(21A + 2.B + RSC) + J'(mlA + m,B + msc) + k (nlA

2 2
) + nzB + "SC)
Accordingly,
llA + RZB + ISC = Kl
mlA + sz + m3C = K2
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nlA + nzB + nSL = K (1.27)

3

where Kl’ Kz, K3 are constants. However, Eq. (1.27) introduces a complica-

tion, since (li,mi,ni) are unknown functions of time.

A great simplification occurs if the system is initially at rest,
since then H + h = 0 and K, = K, = Ky = 0. Consequently, A =B = C = 0.
Attention is restricted to this case.

Provisionally, the following notation is introduced:

Mm
M+n

TXT =X+ §Y + k2 (1.28)

The terms X, Y, Z are given by Eq. (1.21). With Eqs. (1.25) and (1.28), the

law of conservation of angular momentum, H + h = 0, yields
Ilwl + alilw1 + bliZwZ + c113w3 + X =0
12w2 + azilw1 + bzizwz + czisw3 +Y =0
13W3 + 33i1w1 + b312w2 + CSiSWS +2=0 (1.29)

Now Wi» Wy, W, are given by Eq. (1.6), and X, Y, Z are given by Fq. (1.21).
For brevity, the following notation is introduced:

(1.30)

Thus, the following equations are obtained from Eq. (1.29):

2. 2, 2. 2 2 o
[Ty« ay%i) + b5, + o) %ig + ur,® + )W) + [aayi,

+ byl tcpey g - umT W) 4 [agagd) + bobad, +ocjeqiy

- urlrs]w3 = -alxl(aal + Ba2 + Yas)w - b112(o¢b1 + Bb2 + ybs)w
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- 0113(0c1 + Bc2 + YCS)w - u(yr2 - Br3)§
- ua(rzez + r3e3)wcosx + uel(ar2 + Yrs)wcosx

+ u(rze3 - rzez)w51nx

. : . 2. 2.
lajagly # bybyiy + cpepty - uryr Iy + [T, + 2,71, + by%L,

2. 2 2 . . .
+ oyt u(r3 + 1y )]W2 * [a2a311 * b2b312 +c,Cqiq - u12r3]w3
= -a211(aa1 + Ba2 + Yas)w - bzlz(ab1 + Bb2 + ybs)w
- 0213(ac1 + Bcz + ch)w - u(ur3 - yrl)s - uB(rse3

+ rlel)wcosx + uez(yr3 + arl)wcosx + u(rse1 - rles)ws1nx

[a.a,i, + b3b112 + C Cil, = ursrl]w1 + [a,a,i, + b b31

37171 37173 27371 2732

2. 2,
i) + by +cq

2,
i

+c¢c.c.i, - ur,,rs]w2 + [I3 +a 3

2733 3

2 2 _ . :
+ u(r1 + T, )]W3 = -asll(aal + Ba2 + Yaz)w - b312(ab1 + Bb2

+ Ybs)w - c313(ac1 + Be, + ch)w

- u(Brl - urz)s - uy(rlel + rzez)wcosx

* ues(arl + Brz)wcosx + u(rlez - rzsl)wsinx

(1.31)

The unknowns in Eq. (1.31) are wl, WZ’ Ws. The quantities I
12, 13, i, i,, i, W, 0, B, v, €1» €5 €y dTE known constants. The

1’
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quantities s, X, w are regarded as known functions of t. Perhaps the
simplest way to determine ¥ is by the relationship,

t
X = f wdt (1.32)

Since e., e,, e, are known constants, Kq. (1,17) determines r as
1?2 72 73

RSN 1° *2r T3
functionsAof E. By Eq. (1.10), the (i,j,k) components (“i’bi’ci) of
vectors (a,b,c) are knowa functions of t. With a computer program, Eq.
(1.31) can be solved for any sequence of values of t that covers the period
in which the projectile is in the tube. Thus, the functions Wl(t), Wz(t),

WB(t) can be tabulated and plotted.

1.8 MOTION OF THE GUN
A knowledge of the functions wl(t), Wz(t), ws(t) does not
immediately determine the motion of the gun in reference frame F. It is
necessary to determine the direction cosines (Qi,mi,ni) as functions of t.
When these functions are known, the motion of the center of mass of the gun
is determined by Eqs. (1.4) and (1.17), and the absolute orientations of the N
principal axes of the gun are determined as functions of t.
The problem of determining the functions Ris Wiy My is purely one
of kinematics of a rigid body. The results are3

il = Woly ~ Wy 5 By = Wik = Wk 5 B, =Wt - Wi, s
m1 = W3m2 - wzms : m2 = Wlm3 - w3m1 : m3 = wzml - wlm2 ;

[=
1}

1 W3n2 - W2n3 ;o = Wln3 - Wsnl 3} Dy = Wznl - W1n2 (1.33)
Since the functions wl, Wz, W3 have been determined, Eqs. (1.33) are
differential equations that determine the functions Qi, m, Ny when the

initial values are given,

n. 1. Langhaar, Enerqy Methods in_Avplied Mechanics (U), Jdohn Wiley and
Sons, New York, 1962, Chap. 7.
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Tnstead of working with the nine unknown functions Zi, Mey Ny
i
it is possible to work with three Buler angles (0,¢,) by means of the

following relationss:

L, = singsing - cosOcosdeosy
my = ~cospsing - cosUsindcosy

sinBecosy

=
—
il

L, = sinpcosy + cosBcospsing

m, = -cospcosy + cosOsindsiny

= -sin0siny

L. = sinOcosd

m, = sinfsing

n, = coso (1.34)

e C o . . . 3
The differential equations tor 6, ¢, ) are

W, = -0sinp + psinOcosy

W, = -0cosy - ¢sinOsinmp

o

W, = ¢cos0 + ¢ (1.35)

J
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Equations (1.35) arc easily solved algebraically for the derivatives. Thus,

a8
dt

[H

-Wlsinw « W, cosyp

2

(WICOSw - WZSiNW)cSCO

G at
: %%-= WK - (chosw - Wzsinw)cote (1.36)
) According to an %§istence theorem in the theory of ordinary first-
[
order differential equations,there is a unique solution 0(t), ¢(t), ¥(t)

of Bq. (1.36) which takes given initial values (00,¢0,w0), provided that 6
avoids the singular values, 6 = 0 and 0 = w, After 6(t), ¢(t), P(t) are
determined, (Qi,mj,ni) arc determined by Eq. (1.34).

P The existence thcorem also applies directly to Eq. (1.33), i.e.,
N there are unique functions Qi(t), mi(t), ni(t) that satisfy liq, (1.33) and

that take given initial valueos (kio;mio,nio). Although Eq. (1.33) involves

nine dependent variables, it has the advantage that the equations are
linear.

A numerical solution of the differential equations appears
feasiblo., It is not necessary to project far into the future, since the

projectile quickly leaves the muzzle.

1.9 CASE OF A BALANCED PROJECTILE

i If the projectile is perfectly balanced il =i, and €, = €, =

i €y = 0. Also ¢ = a, ¢, = B, Cz = Yo Then the first of Fqs. (1.31)

b becomes

- . 2 2 2, 2 o2

A [Il + l](ﬂl + hl ) + @ by u(!2 vory )]w]

, + [11(a142 + blbz) + aBig mlxz]w2

: + [11(;\133 + blbs) +oayig - m'lrs]h3

i 4H. L. Tace, Ovdinary Diflerential Equations (U), Dover Pubs., dew York, 1944
Avta. 3.3 and 3.31.
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o 2 . 2
--11w[aa1 + Bala2 * Yaag + ab,” + Bblb2 + Yble]
. 2 2 2 .
-oig(a” + BT + y)w - u(yr, - Bry)s

In view of identities among the direction cosines, this reduces to

. 2. . 2 2 . .
. [Il + 11 +tQ (13 - 11) + u(rz + r3 )]wl + [QB(]-S = 11)
E - ury ol ¢ foy(ig - i) - urlrs]w3 = -oiqw - u(yr, - Br)s
] (1.37)
E: Likewise from the second and third of Eqs. (1.31),
e . 2. .
- [08{ig - 1)) - uryr)JW) + [, + i) + B7(ig - &)
.l
b sucr ¢ M, ¢ Bylig - ip) - ur,r W

3 17472 3 1 2733
{ = -BiSw - u(ar3 - le)s {1.37)

[a’y(l3 - 11) - ursrl]w1 + [By(l3 - 11) - ur3r21w2
. 2,. . 2 2

- + [I3 +i;p vy (13 - 11) + u(r1 + T, )]w3
W . .
N = -yizw - u(Br1 - arz)s (1.37)

Equation (1.37) is a simplified form of Eq. (1.31) that applies only if the
projectils is perfectly balance...

1.10 ELEMENTARY RELATIONS BETWEEN FORCES AND MOMENTS
e The preceding theory deals with the motion of a free rigid gun.
‘ The forces and moments of interaction between the vrojectile and the gun also

are of interest. Although gravity has teen neglected, it wculd have
only a small effect on these forces and moments.
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The resultant force of contact that the projectile exerts on the
tube is designated as F. The force of contact that the tube exerts on the

projectile is -F. If the gun is regarded as a free body, the net external
force on it is

F - Apgd (1.38)

If the projectile is regarded as a free body, the net external force on it

(neglecting resistance of air ahead of the projectile) is

-F + AplG (1.39)

The detailed forces of contact that the projectile exerts on the

S

tube are designated as ?i, £, Hence,

F = Lf. (1.40)

Let force'?i act at the point t + Ay, where T is the vector from the center
of mass of the gun to the center of mass of the projectile. Then the

moment that the forces ?} exert about the center of mass of the gun is

M

1]
o]
—
L2}
+
>
L=
Fad
)|
n

. ., =T xF +IX x¥T, (a)
1 1 1 1

The forces of contact that the tube exerts on the projectile are -fl, -f2,
-fs, . « . The moment of these forces about the center of mass ot the

projectile is

M= - IX x F, (b)

By Eqs. (a) and (b),

M' =T xF-M (1.41)




The moment about the center of mass of the gun of all external
forces that act on the gun is

M - & x Upgh (1.42)

where e is the vector from the center of mass of the gun to the initial
location of the geometric center of the projectile. The moment about the
center of mass of the projectile of all the forces that act on the projectile

is

M' - € x UpjA (1.43)

where € is the vector from the geometric center of the projectile to the

center of mass of the projectile. If the center of mass of the projectile

is on the axis of the tube, € = O.

1.11 MOMENT OF FORCES ON THE GUN

The resultant moment M exerted on the gun by the forces of
contact with the projectile is resolved into components along the principal
axes of inertia of the gun through its center of mass, i.e.,

M= 1M

1 + JM2 + kM3

Also, by definition,

Vo= o+ 38 + ﬁy
e = ie, + je, + ke, (1.44)

Consequently, by Eq. (1.42), the net moment about the center of mass of the

gun is
1[M1 - POA(YGZ - Bes)] + J[Mz - poA(aes - Yel)]

+ fcms - pA(Be; - ae,)] (1.45)
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The componernts Mi are determined by Euler's dynamical equations for a rigid

bodys; namely,

1
I 4t - (I, - I)W, e + poAlye, - Bes) = M,
dw,,
I 3t - (3 - I)WgW; + poAlaes - ye) = M,
dw,,
Is gt - (1) - L)W, W, + pyA(Be; - ae)) = My (1.46)

Since (WI,WZ,W3) are obtained from a computer program for the solution of
Eq. (1.31) (or, in the case of a balanced projectile, from Eq. (1.37)), the
derivatives dwi/dt can be obtained by numer‘cal differentiation. The
quantities (a,8,Y), (el,ez,es), and (11,12,13) are known constants.
Consequently, Eq. (1.46) determines M, provided that the breech pressure
po(t) is known.

1.12 FORCE OF A BALANCED PROJECTILE ON THE TUBE
) The angular acceleration of the gun is %ﬂ Since W = iwl + ng
+kW3,
# = ;&l + 3&2 + ﬁﬁs + iwl + éwz + iws
Also,
PeWxl =iy -k,
i =Wxj= ﬁwl - iW,
:lE=Wx1?=EW2-JW1
Consequently,
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Therefore,

~Ne Ne e

W= iW, + jW, + kW

(1.47)

The center of mass of the gun is located in a Galilean reference

frame by vector Eb, which is given by Eq. (1.2). The external force on the

gun is MRO. Consequently, by Eqs. (1.38),

F - Apos = -ﬁ%

where p = Mn/(M + m).

A balanced projectile is considered in this article.

by Eq. (1.13),

— —— "

T =€ + Vs
Therefore,

> L R Ae

T =€ + VS + VS
However,

L ] L]

—_ — —_ ~ ~

e=Wxeand V=Wxv
Therefore,

e

T=WXT+ Vs
Differentiation of Eq. (1.50) yields

— :- p— J— — Ao [a T
rT=Wxr+WXT+ Vs + Vs

30
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Consequently,

(1.49)

(1.50)
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Hence,

T=FxT+Wx (WxT) + 20 x s + V8 (1.51)

By expansion of the vector triple product, this becomes

T=WXT+WWeT-TH + 20 x Vs + 0§ (1.52)
Consequently, by Eq. (1.48),
?=Ap03-u(Wx?+WW.?-?w2+2Wx3§+G§) (1.53)

With Eq. (1.53), the net force on the gun is determined by Eq. (1.38), and
the net force on the projectile is determined by Eq. (1.39). 1In view of
Eq. (1.39), the axial component of force on the projectile is

Fevs Ap, (1.54)

For numerical computations, Eq. (1.53) must be expressed in

scalar form. The components of F are represented by

F = iFl + ﬁpz + 12F3
Also,

v = ia + 38 + ﬁy
and

T = irl + Srz + ﬁrs

In view of Eq. (1.47),

Wxry-= 1(W2r3 - Wsrz) + J(Wsr1 - ers) + ﬁ(wlr2 - Wzrl)
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Accordingly, Eq. (1.53) yields

e
1]

1 a(Ap0 - us) - u(wzr3 - Wsrz) - uwl(w2r2 + wsrs)

2 2 .
+ury (W," + W) - 2us(YW, - BW,)
: F2 = B(Ap0 - us) - u(w3r1 - wlrs) - uwz(wlr1 + w3r3)
: your, (W2 + W %) - 2uS(oW, - YW,)
N 24’3 1 3 1
-
5 F5 = Y(Ap0 - us) - u(er2 - Wzrl) - uws(wlrl + Wzrz) '
: oo W, 2+ W2 - 2uS(aW, - aW.) (1.55) 4
G 3V 2 1 2 ) -
: The solution of Eq. (1.37) provides the functions wl, WZ’ w3. Consequently,
i the force F is determined by Eq. (1.55), provided that the center of mass
. of the projectile lies on the geometric axis of the tube. Then the moment i
on the projectile is determined by Eq. (1.41), which, in expanded form is
| - - -
Mp' = Tofy - T5Fy - M)
) 'z - T -
; My' = T3F) - 1)F5 - M,
K] t = - T -
y M3 rle rzrl M3 (1.56)
1.13 FORCE OF AN UNBALANCED PROJECTILE ON THE TUBE
: If the projectile is dynamically unbalanced, r and T are given by
} Eqs. (1.17) and (1.19). The angle X through which the projectile has
= turned relative to the tube is '
. . .
X=det;w=x {1.57)
0
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Differentiation of Eq. (1.19) yields

v L] . L] [ ]
— — —_ — -— e A e o~ —_ ~ _
T=WXT+WXT+Vs +Vs + 0wy X eocosx + WY x g,cosy
~ :. A — . o R ; . 2—
+ WY X € CO8X - W V X €,S1RX - WELSINY - WESINX - W7ECOSX

Now T can be eliminated by Eq. (1.19). Also,

\73=Wx3andé0=WxEO
Consequently,
—r_=i:4_x.1_°+Wx [WxT+vs +ww xEOcosx -wgosinx]
+ WX VS + V8 + 00 x E'Ocosx + 0@ x V) x Eocosx
+wo x (W x Eo)cosx - w2 x Eosinx - (:fé'osinx
- wW X €,siny - w’E cosy
0 0
Since
(W x V) x50+3x (WxEO) =W x (GxEO)

this reduces to

T=WNxT+Ax [WxT+ 208+ 2wo xéocosx - ZwEOSinx]

+v§+w(vx'€cosx-€0

0 siny) - 0)2(3 X €.siny + €,c05Y)

0 0
(1.58)

if EO = 0, Eq. (1.58) reduces to Eq. (1.52).
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For brevity, vectors u and vV are defined by

v x Eocosx - E-:_Osinx =u = iul * 'juz + l/Eu3

v x Ebsinx + Ebcosx =V = ivl + ﬁvz + ﬁvs (1.59)
Also, Eb =ig, + 362 + ﬁes. Consequently,

u = (Be3 - yez)co~ - elsinx

u, = (Ye1 - aes)cosx - ezsinx

Uy = (ae2 - Bel)cosx - essinx (1.60)

v = (Be3 - yez)sinx + g,cosy

v, = (Ye1 - aes)sinx + €,C08X

vy = ((!62 - Bel)sinx + €5c08) (1.61)
By Eqs. (1.48) and (1.58),

T = I\pOG - u%o - 20uW X U - uou + umZV (1.62)
where ?0 is the value of T when EO = 0. Hence, %0 is given by Eq. (1.52).

Set

F' o= ApyV - T, (1.63)

Then F' is the expression that was obtained for F in the case of a balanced
projectile (Eq. (1.53)). Set
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F=T"+F; F=if + gf

1 kf3 (1.64)

2 +
Then f is the correction to F' to account for unbalance of the projectile.
In scalar form, F' is given by Eq. (1.55). By Eqs. (1.62), (1.63), and
(1.64),

F=ul-20 x U - wu + u)zV] (1.65)

Hence,

lag]
(]

. 2
1 u[-2u)(wzu3 = Wau,)) - wup + Vl]

=)
)

o 2
) = u[-Zm(W3u1 - Wlus) - W, +w v2]

34'&)2\'

lgs]
i

= ul-20(Wu, - Wu) - wu (1.66)

5]

The quantities (fl’fz’fs) are the corrections to be added to
(Fl’FZ’FS)’ respectively, in Eq. (1.55) to account for dynami¢ unbalance of
the projectile. It is to be recalled, however, that W is affected to some
extent by unbalance of the projectile. Consequently, (wl,wz,ws) are to be
computed by Eq. (1.31) rather than by Eq. (1.37). On the other hand, the
quantities (wl,wz,ws), determined by Eq. (1.37) are to be used in conjunction
with Eq. (1.55). The moment M' on the projectile is given by Eq. (1.56) in
either case. Equation (1.46), which gives the moment M of the contact
forces that the projectile exerts on the gun, is valid whether or not the
projectile is dymamically balanced. It is to be noted that Eqs. (1.11) and
(1.59) show that € = v.
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SECTION 2
FORCES AND MOMENTS ON A RIGID IMMOVABLE GUN
WITH AN UNBALANCED PROJECTILE

2.1 INTRODUCTION

In this section, the gun is considered to be rigid and immovable.
The motion of the projectile in the tube is prescribed. The net force and
moment acting on the projectile accordingly are determined by the dynamical
theory of a single rigid body. The effect of gravity is neglected, but it
would merely augment the force F by the term mg, where g is the vectorial

acceleration of gravity. Gravity would not alter the moment equations.

2.2 KINEMATIC RELATIONS
Since the angular velocity of the gun is zero, the angular
velocity of the projectile is

£}
n
<
=

(2.1)

where, as before, w is the spin of the projectile, and v isa constant unit
vector along the axis of the gun tube,
Equations (1.7), (1.8), (1.9), (1.10), and (1.11) again apply.
Since the origin 0 of coordinates (x,y,z) is now arbitrary, it
is conveniently taken to b= the initial geometric center QO' of the
projectile (Figure 1), Then R0 = ¢ = 0, since the center of mass of the gun

is irrelevant. Also, the axes (X,y,z) may be oriented in the directions

§0, SO’ 30 of the initial principal axes of the projectile. Then 30 = i,
bo = 3, and 30 = k. Consequently,
a, = 1 ; Bl =0 Yl =0
a, = 0 ; 82 =1 ; Y, = 0
g =05 B, =03 vy =1 (2.2)
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In view of Eq. (1.8) and Eq. (2.1), Wy = Wea=mvoea=woe oa, =W e i

= wa, and likewisc for W, and W, Conscquently,

Wy oS wag o, = wd ; Wo = Wy (2.3)
Hence,

Wy = we oW, = wl ; Wy = WY (2.4)

Since V and Eb are constant vectors and w = i, by Eqs. (1.11) and
(1.59)

'_:. 2— Yo,

€ = ~wE +wu (2.5)

Since ﬁb =e = 0, the location ﬁl of the center of mass of the
projectile is (Figure 1)

T =R =vs+E (2.6)

~

Conscquently, since v is a constant vector, the acceleration of the center of
mass of the projectile is

T=v§+¢E (2.7
Equations (2.5) and (2.7) yield

= Ao 2 [y

T VS - WE + wu (2.8)

With Eq. (1.10), iq. (2.2) yieclds

a = i[az + (32 4 yz)cosx] + 5[@8(1 - cosX) + ysinx]

+ ﬁ[ya(l - cosy) - Bsiny]
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b = ifaB(l - cosy) - ysiny] + j[Bz + (y" a"')co:;x]
+ ﬁ[ﬁy(l - cosX) + asiny]
¢ = E[Ya(l - cosy) + Bsiny] + 3[8'7(1 - cosyx) - asiny]

+ fc[YZ + ((x2 + Bz)cosx] (2.9)

Equation (1.11) yields

TxV=0x (Eo X V)siny + E'o x Veosy
Hence,

E XV = (eo - W e eo)sxnx *+ €, X Veosy (2.10)
2.3 FORCES ON THE GUN AND ON 'THE PROJECTILE

The force that the projectile exerts on the gun by direct contact
is denoted by T, as before. The force of contact that the gun exerts on the
projectile is -F, The net force on the projectile is accordingly

T+ V(pyA - R) (2.11) '

where R is the resistance of air ahead of the projectile, 1In view of Eq.

(2.8), Newton's law yields
T+ VA - R) = On§ - e’ + miu (2.12)

Hence, by Eqs. (1.11) and (1.59)

F = G(plA - R -ms) + nmz(G X €,siny + EO

€ cosy)

- mo(d x Eocosx - E"Osilxx) (2.13)
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The axial frictional force that the gun exerts on the projectile
A A

is in the direction ~V. Tts magnitude is F ¢ v = Fo. Since v o Eb = 0,
Lq. (2.13) yields

Ff = plA - R~ ms (2.14)

By definition,

ve=la+38+Ry, € =ie, +je, + ke (2.15)
0 1 2 3

N

Consequently, in scalar form, Eq. (2.13) is

=3
11

“ 2, . )
L = P A - Ro-m8) + mo®[(Bey - vey)sin + € cosx]

- ML[(BGS- Y€,)cosX - €,sinx]

- (X 2 .
Pz = B(plA - R - m§) + mw [(Ye1 - GEg)siny + ezcosx]
- mﬂs[(yc1 - Qg )cosy - ezsinx]
. 2 N
Py = y(plA - R - mg) + [(ae2 - Be )siny + CSCOSX]

L]
- mn[(a82 Bel)cosx - €psiny] (2.16)
The vectors ¢, and V X T, are perpendicular to the axis of the
tube. The second expression in Eq. (2.13) represents centrifugal forco. It
is zero if the eccentricity Eb is zero.
In addition to the force T, the gun experiences the breech force

-GpOA from the gases,

2.4 MOMENT ON THE PROJECTILE
In view of Eq. (1.43), the moment about the center of mass of the
projectile of all the forcoes that act on the projectile is ﬁ'-—Eﬁ(G(plA - 1),

(In Eq. (1.43), R was neglected.) The components of this moment on the

principal axes of the inertia of the projectile arc obtained by taking the




scalar products of the moment with 3, fs, and 3 By virtue of Eqs. (2.3}
and (2.4), Euler's equations (Ref. 3) yield

A T Y ST 2
M!' » 2 = (plA -Rexv e a+io- (12 - 13)va
M'« b= (pjA - RIE XV * b+ i,80 - (ig - il)Yaw2
M 3= (pA-REXV . C+ig- (i - iz)anz (2.17)

AN ey AN —

If U is any vector, aa - U + bb » U + cc « U = U. Consequently, Eq. (2.17)
yields

— —_— ~ . ~ . A . ~ 2 R . ~
M' = (plA - R)e xVv + 0)(1108 + 128b + 137c) -w [(12 - 13)Bya

* (i - il)yaﬁ + (i - iZ)aBE] (2.18)

The constant vectors v = i + 36 + fw and EO = ’i\.el + 3&:2 + ﬁez are
considered to be known. Also, X(t), w = X, P, (t) and R(t) are regargedAas
xnown functions. Accordingly, in view of Eqs. (1.11) and (2.9), a, b, c,
and € are known vector functions of t. Consequently, Eq. (2.18) is an

explicit vector formula for the moment M'(t). Equation (2.10) is a

. representation of the vector product € x V that occurs in Eq. (2.18).
-:;': Accordingly, the vector M', defined by Eq. (2.18), may be resclved into its
i, 5, ﬁ components. Setting M' = '{Ml' + §M2' + ﬁMS‘, we get

o

- [ - - 2 - 3

. M1 (plA R) [elsmx a(ael + Bez + YES)SIHX

5 + (ye, - Be )cosy] + [wio - wz(i - i,)8Y] [Ot2

s 2 3 1 2773

L’;-::

[ 72 ‘. 2. .

o + (3% + y“)ycosy] + [w12[3 -wi(is - 11)'Y0£] [aBversy
F. - ysiny] + [&)isy - (»2(11 - iz)aB] [yaversyx + Rsiny]
.

=
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]

M2' = (plA - R)[ezsinx - B(ae1 + Be2 + Yes)sinx + (ae3 -yii)cosx]

+ i - wz(iz - i5)By] oBversy + ysinx] + [wiB
- Wiy - iyl B% + (vF + aPcosx] + i gy
- mz(il - iz)aB][Byversx - asiny]
M,' = (plA - R) [3351"X - y(ou—:l + Bez + yes)sinx + (361 - aez)cosx]
+ [&ila - wz(i2 - i,)B8y] [yaversy - Bsiny] + Bﬁizﬁ

- wz(i3 - i,)ya] [Byversx + asiny] + [&isy - wz(i1 - i,)aB]

i [y2 + (a2 + Bz)cosx] (2.19)
h where versy =1 -~ cosy.
? The moment M of the contact forces that the projectile exerts on

[ the gun about the origin QO' is given by Eq. (1.41); namely,

_ M=TxF-M (2.20)

— A -—
where r =vs + ¢ .

PR

If the projectile is balanced, €0
principal axis of inertia of the projectile - say V = k. Then Eq. (2.19)

7

= 0 and v lies along a

e Y

yields M, ' = MZ’ = 0 and M3' = i.w. In this case, M

1 3 3
torque. For an unbalanced projectile, the rifling torque may be defined as

' is the rifling

e v ¥ L 0

M' « U, where M' is represented by Eq. (2.18). The term (p,A - R)E x ¥
cancels out of the scalar product M' ° v.




SECTION 3
FORCES AND MOMENTS ON A FREELY-RECOILING
RIGID GUN THAT IS CONSTRAINED AGAINST ROTATION

3.1 1NTRODUCTION

A rigid gun translates freely along an inclined guide, represented

by an inclined plane in Figure 2. It is constrained against rotation. The
e angle 6 of the inclined plane may differ from the angle of elevation 6 + ¢
& of the barrel. Air resistance to motion of the projectile and effects of

gravity are included in the analysis. It is questionable whether gravity is
4£i meaningful in this problem, since it would cause the system to slide down
&~ the inclined plane with increasing speed. It is easily eliminated, however,
V' by setting g = 0.
In addition to notations introduced previously, a few new
notations are added.
ﬁ is a unit vector along the axis of the recoil guide (Figure 2).
£,n are rectangular coordinates fixed in a Galilean reference
;g; frame that contains the recoil guide (Figure 2).

u is the recoil displacement along the guide (Figure 2).

ii: ﬁi is the vector from the origin of the coordinates (£,n) to the
Jﬁ center of mass of the projectile (Figure 2).
3.2 MOTION OF THE SYSTEM
o The velocity of the projectile relative to the gun is s. The
‘;{ component of this velocity along the guide is écos¢, as is seen by Figure 2.
f5 Consequently, the momentum of the system ip the direction of the guide is
e m(scos¢ - u) - Mu = mscosp - (M + m)u
@
& The component of external force on the system in the direction of
= the guide is
2
o -(M + m)gsin® + (Ap1 - Ap0 - R)cosd
where R is the resisting force of air in the tube ahead of the projectile.
:i‘ Since the external force is equal to the rate of change of momentum,
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mscos¢ - (M + m)i = -(M + m)gsind + (Ap1 - Ap, - R)cos¢

or

(Ap; - Ap, - R)
M+nm

m
M+mnm

= gsind + scos¢p -

cos¢ (3.1

Since the gun is constrained against rotation, the absolute angu-
lar velocity of the projectile is

~

W o= (3.2)

Since w, s, and R are regarded as known functions of t, Eqs. (3.1) and (3.2)
determine the motion of the gun and the projectile.

3.3 FORCES IN THE SYSTEM
The resultant force of contact that the projectile exerts on the

tube is F. The resultant force of contact that the tube exerts on the

projectile is -F. If the gun is regarded as a free body, the net force on
it is

F- ApoG + Mg (3.3)

where P is the gas pressure at the breech. The net force on the projectile
is

-F + mg + (Ap, - R)V (3.4)

where Py is the gas pressure on the base of the projectile. Consequently,
by Newton's law

-F + mg + (Ap, - R)V = mR (3.5)
By Figure 2,

R, = e + Vs + € (3.6)
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Also,

~

e = Eb - uu (3.7
where'36 is the initial value of e. Hence,

El = Eb - Ju+ Vs +E (3.8)
Therefore,

%1 = -aii + V8 + E (3.9)

Equations (1.11) and (2.5) are again applicable. Equations (3.1), (3.5),
(3.9), (1.11), (1.59), and (2.5) yield

A ~
Al

F=mg+ (Ap1 - R)G + umgsinb + Fr%};-§c05¢ - ﬁ—%EE(Apl - Ap0

- R)cos¢ - mos + mmz(G X €,siny + €,cos) - m&(s X €,COSY

0 0 0
- Ebsinx) (3.10)
The magnitude of the axial friction force on the projectile is F - v = Ff.
Hence,
.. 2 mAp
T = <fci n . ey M+ msin'¢ 0 2
Ff = -mgcosbsind + (Ap1 R - ms) W+ m W Cos ¢ (3.11)

If M+ oo, Ff reduces to Eq. (2.14), aside from the g-term which was neglected
in the derivation of Eq. (2.14).

3.4 MOMENT ON THE PROJECTILE

Since the motion of the projectile relative to the gun is
presumed to be prescribed, the recoil of the gun merely superimposes a
translation on the absolute motion of the projectile. The recoil has no
effect on the angular velocity of the projectile. Therefore, in view of
Euler's equations (Ref. 3), it has no effect on the resultant moment about

the center of mass of the projectile. Likewise, gravity has no effect on
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this moment. The theory of moments on a projectile in a motionless rigid gun
consequently is directly applicable to the recoiling gun. The moment M
about the center of mass of the projectile is again given by Eq. (2.18).

The components of M' are again given by Eq. (2.19).
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SECTION 4
RECOILING RIGID GUN WITH OFFSET BREECH
AND FIXED TRUNNION

4.1 INTRODUCTION

If the center of mass af the breech of a gun lies below the axis
of the tube, the recoil causes the muzzle to jerk upward when the gun is
fired. Because of its spin, the projectile then exerts a gyroscopic
couple that tends to turn the tube sideways. It is assumed in this section
that a constraint is provided which prevents rotation of the gun about a
vertical axis. Then the spin of the projectile has no effect on the motion
of the gun. Also, because of this constraint, offsetting of the breech
block to the right or the left has no kinematic effect. When the gun is
fired, each particle describes a curve that lies in a plane perpendicular to
the axis of the trumnion. Because of the constraint provided by the
trunnion, the gun has only two degrees of freedom. The projectile adds
another degree of freedom to the system.

Figure 3 is a schematic side view of the gun. The trunnion is
fixed in a Galilean reference frame; e.g., the earth. The recoil mechanism
is represented schematically as a spring in a slot. One end of the spring
is attached to the breech block, and the other end to the trunnion. The
slot slides freely over the fixed trunnion. The spring need not be Hookean.
Rather, the force FF exerted by the recoil mechanism is regarded as an
unspecified function of u and ﬁ, where u is the displacement of the breech
along the axis of the slot (Figure 3). Accordingly, the recoil mechanism
may contain nonlinear springs and nonlinear dashpots. Also, Coulomb
friction is admitted. For generality, the line of action of the recoil
mechanism is not taken parallel to the axis of the tube.

The projectile is considered to be a body of revolution with
its center of mass on its axis of symmetry, and with one principal axis of
inertia coinciding with the axis of symmetry i.e., the projectile is

perfectly balanced.

4.2 NOTATIONS
Some deviations from previous notations are necessary., Also, a

few notations are added.
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X,y are rectangular coordinates with the y.axis vertical, and the
origin at the trumnion. 'They are fixed in a Galilean reference frame
(Figure 3).

a is the angle between the axis of the tube and the axis of the
recoil mechanism. It is a constant (Figure 3).

u is the displacement of the gun along the axis of the recoil
mechanism (Figure 3).

&,n are rectangular coordinates scribed on the breech. The &-axis
is the axis of the recoil mechanism.

6 is the angle between the £ and x axes. Generalized coordinates
are 0, u.

EO’"O are the £, n coordinates of the center of mass of the
prejectile before firing.

E,n are the &, n coordinates of the center of mass of the gun.

X,y are the x, y coordinates of the center of mass of the gun.

XpsYo are the x, y coordinates of the center of mass of the
projectile before firing.

gl,nl are the £, n coordinates of the center of mass of the
projectile at time t.

X|»y, Aare the x, y coordinates of the center of mass of the
projectile at time t.

Fo is the force of gas pressure on the base of the tube at time t.

F1 is the net force driving the projectile at time t (force of gas

pressure minus the friction of the barrel). Fl includes the resistance of

air ahead of the projectile.

F(u,ﬁ) is the force that the recoil mechanism exerts on the
breech.

s is the distance that the projectile has traveled relative to
the gun at time t,

M is the mass of the gun.

m is the mass of the projectile.

I is the moment of inertia of the gun about a transverse axis
through the center of mass of the gun,

i is the moment of inertia of the projectile about a transverse
axis through the center of mass of the projectile.

T is the kinetic energy of the system.
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g is the acceleration of gravity.

Ql’QZ’QS are components of generalized force. oW = Q16u
+ Q269 + QSGS.

4.3 COORDINATE 'TRANSFORMATION
By Figure 4,

(& - wcosd
(& - u)sind
Consequently,
u)cosd - Nsind
u)sin® + ncosod

u)coso nosine

- u)sind nocose

u)cos6 nlsine

¥y = u)sind nlcose

Also, by Figure

El = 50 + SCOosSQ
nl = no + Ssino

Therefore,

Xy = (CO - u)coso - sin0d + scos(0 + a)

"o
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y, = (ﬁc - u)sind + nocose + $8in(® + o) (4.0)

By tq. (4.2),

62 4 (0 + )2 (4.7)

L By Eq. (4.4),

o

N e 2 s 2 o v 02 e ad

:". xl + YI = [0(51 = u) + n1] + [gl - u - nle] (4°8)
' By Eq. (4.5),

o él = scosa ; ﬁl = $sina (4.9)

o 4.4 KINETIC ENERGY

. The Kinetic energy of the gun is

2 w122 1.~ 29 -
‘f' lg =3 I07 + 5 M(x™ + y7)

klj The kinetic energy of the projectile is

2.1 e 2  +2

T o=L1i82. 1
[ = 5 i0” + 3 m(x1 *Y, )

Consequently, in view of Eqs. (4.5), (4.7), (4.8), and (4.9), the kinetic
energy of the system is

'ii T = %(I + i)éz + %-M[(E - u)zi')2 + (0 + 35)2]

-~ + % m[O(E,'0 + SCOSQL - u) + ssina]2

+ % m[§cosu -u - 6(n0 + ssino:)]2 (4.10)
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4.5 GENERALIZED FORCEH
If the coordinates (u,0,s) receive virtual increments ($u,80,8s),
the work of all the forces that act on the system is a linear form in these

increments; i.e.,

SN = Qéu + Q80 + Q83 (4.11)

Ql’ Q2, Q3 are called '"components of generalized force."
The virtual work of gravity is

;
6wgr = -Mgdy - mgdy,
By Eq. (4.2),
8y = -(sin®)du + [(€ - u)cos06]80 - (Nsin0)&o
By Eq. (4.6),
Gyl = [(E;0 - u)cosh - NESing + scos(6 + a)]80 - Susind
+ 5in(® + a)ds
Consecquently,
éwgr = (M + m)gsind Su - Mg [(E - u)cosd - Nsin0)S6
- mg[(£0 - u)cos6 - nosinO]GO - mgscos(0 + a)d&o
- mgsin(0 + a)ds (4.12) g

The virtual work of gas pressure on the breech (see Figure 3) is

Sw = -Focos(O + a)8x

br - F051n(9 + a)&yo

0
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Consequently, by Eq. (4.3),

war = Focosaau - FO[(C0 - u)sina - nocosa]GO (4.13)

The virtual work that the recoil mechanism performs on the breech is

§W_ = -Féu (4.14)

The component of absolute virtual displacement of the projectile
along the axis of the tube is

6x1c05(6<+a) + Gylsin(e + Q)

With Eq. (4.6), this reduces to

8s - Sucoso + (go - u)sinaéd - nocosade

Consequently, the virtual work performed on the projectile is

W__ = F165 - Fléucosa + FI(E0 - u)sinad® - F

- cosaéf (4.15)

1Mo

Equations (4.11) to (4.15) yield

;ff Q1 = (M + m)gsinb + (Fo - Fl)cosa - F(u,ﬁ)

= )

ﬁﬁ! Q2 = -Mg[(€ - u)cosd - nsind] - mg[(E0 - u)cosO - nosinB]

N - mgscos(8 + a) - (F, - Fl)[(E0 - u)sina - ngcosa]

5

L Q, = -mgsin(0 + o) + F| (4.16)
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The component Q2 may be identified as the counterclockwise moment about the

trunnion of all external forces acting on the system. The force, F_ and F

0 1

are regarded as external forces.
4.6 LAGRANGE 'S EQUATIONS

The Lagrange equations are

d aT aT _

AT TR

d oT

'a?('a_é') = Q2

d oT oT _

E(E)_;) - 55 T Q3 (4.17)

The term 9T/96 is missing because T does not depend on 6 (see Eq. (4.10)).
The derivative BT/aé may be identified as the angular momentum of the system
about the trunnion. Consequently, the second Lagrange equation expresses the
fact that the mcment of all the forces about the trunnion equals the rate of
It

are internal forces, and, in the absence of

increase of the angular momentum of the system about the trunnion.

0 and F1

the ang: ar momentum of the system about the trunnion is constant.

might be argued that F

gravity,

However, this is true only if the gases in the tube are inciuded in the

system. Cons..juently, it is best to regard F_ and Fl as external forces.

0

Force F, may include the resistance of air in the tube ahead of the

1

projectile, which is clearly an external force.

With Eq. (4.16), the first Lagrange equation yields,
M+ mi + (My + me + mssina)é - mScosa - (M + m)ué2
+ (ME + mEO + mscoscx)é2 + 2msbsina + F(u,ﬁ)

= (M + m)gsin® + (FO - Fl)cosa (4.18)




By Eq. (4.10),

2

aT | Mn + m(n, + ssina)Ju + [I + i + M(E - U)2 + Mn

+ m(&_’,0 -u + scosoL)2 + m(n0 + ssina)z]é
+ m[(E0 - u)sina - nocosa]§ (4.19)

Accordingly, by Eqs. (4.16) and (4.17), the second Lagrange equation is

é% {Mn + m(n, + ssin)]u + [I + i + ME - u)? + M12

+ m(E0 -u+ scosa)2 + m(n0 + ssina)Z]é + m[(E0 - u)sino

- nocosa]§}= - Mg[(Z - u)cos® - nsind] - mg[(E0 - u)cosd

nosine] - mgscos(® + a) - (F0 - Fl)o
(€, - wsina - njcosa] (4.20)

The Lagrange equation corresponding to s is

[(E0 - u)sinu - nocosa]é + 8§ - Qcoso - é2(£0 - u)cosa

F

'zs - 2ufsino - éznosina = -gsin(6 + a) + ;} (4.21)

-8

Equations (4.18) to (4.21) are simplified considerably if a = 0.

The displacement s of the projectile and the base pressure force
F0 may be regarded as known functions of t. Equation (4.21) may be used to
eliminate F1 from Eqs. (4.18) and (4.20). After F, is eliminated, Egs.

1
(4.18) and (4.20) are two nonlinear coupled second-order ordinary
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differential equations that determine the functions u(t) and 6(t), if
0’ 60’ 60, 60 are given. After u(t) and 0(t) are determined,
Fl(t) can be calculated by Eq. (4.21).

Rotary friction and rotary spring resistance in the trunnion have

initial values u

becn disregarded, but their inclusion in the equations is simple. The
right side of Eq. (4.20) is merely augmented by a term -¢(9,é), which
represents the resisting moment of the trunnion.

If the system starts from rest, the quantities u, ﬁ, 8 are small
while the projectile remains in the barrel. Consequently, it is reasonable
to linearize the differential equations in these variables. At least, this
approximation provides a start for an iterative solution of the nonlinear

equations.
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SECTION 5
CONCLUSIONS

The equations are rather compli:ated, but they appear to be
amendable to numerical treatment with a digital computer. No numerical
results are included in this report.

Section 1 treats a gun that is unsupported. In an actual gun,
the effect of the recoil mechanism may be negligible during the few
milliseconds that the moving projectile remains in the barrel. The trunnion
provides a constraint, but it may be temporarily ineffective if there arvre
appreciable clearances in the bearings. Consequently, the unsupported gun
might not deviate unduly from reality in some cases.

Equations (1.31) are the key equations in Cection 1. For a
balanced projectile,they reduce to Eq. (1.37). The unknowns in Eq. (1.31)
or (1.37) are the angular velocity components (WI,WZ,WS). Equations (1.31)
or (1.37) are linear algebraic equations in these variables. Consequently,
they are immediately solvable. After (wl,wz,ws) are calculated, the
direction cosines (li,mi,ni) of the principal axes of inertia of the gun
are determined as functions of time t by solving the nine linear first-
order differential equations (1.33) or, alternatively, by sclving the three
nonlinear first-order differential equations (1.36). Apparently, these
equations must be solved numerically. After (Ei,mi,ni) are determined,
the motion of the center of mass is determined by Eq. (1.4). Thus, the
motion of the system is determined completely, since the motion of the
projectile relative to the gun is presumed to be known. Since the angular

velocity components (wl,w Ws) have been calculated, the components (Ml’

MZ’MS) of the moment ﬁ'(eierted about the center of mass of the gun by the
contact forces of the projectile) are determined by Euler's dynamical
equations for a rigid body (Eq. (1.46)). The force F that a balanced
projectile exerts on the tube is determined by Eq. (1.55). For an
unbalanced projectile, this force must be augmented by the corrective terms
in Eq. (1.66). The rifling torque and the axial friction force on the
projectile can be calculated directly after the vectors M and F are

determined.
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Section 2 treats a gun that is immovable. The force F that the
projectile exerts on the gun is given, in this case, by Eq. (2.13), or, in
scalar form, by Eq. (2.16). The moment M' about the center of mass of the
projectile of the contact forces imposed by the tube is given by Eq. (2.18),
or, in scalar form, by Eq. (2.19). These equations are explicit algebraic
formulas for F and M'. Other pertinent forces and moments are immediately
determinate when F and M' are known.

Section 3 treats a gun that translates freely along a guide, but
it is constrained against rotation. In this case, the moment M' is the
same as for the fixed gun, treated in Section 2. The recoil displacement u
is determined by integrating Eq. (3.1). The force of contact F that the
projectile exerts on the tube is given by Eq. (3.10). The magnitude of the
axial frictional force on the projectile is given by Eq. (3.11).

Section 4 treats a gun with a trunnion and a general type of
recoil device (see Figure 3). The system has two degrees of freedom,
corresponding to the recoil displacement u and the angular displacement 6
of the gun., A third coordinate s is introduced. It represents the axial
displacement of the projectile with respect to the gun, but, since this is
presumed to be given, the Lagrange equation corresponding to s merely

determines the net driving force F. on the projectile. After F, is

1 1
eliminated, Eqs. (4.18) and (4.20) are two nonlinear second-order ordinary
differential equations that determine the functions u(t) and 6(t), if

initial values uo, uo, 60, éO are given. A numerical program to carry out
this solution is needed.

Within the frameworks of the mathematical models that are used,
the analyses are exact. However, the problem of gas dynamics in the tube is
not rigorously separable from the problem of dynamical response of the gun.
The effects of momentum and kinetic energy of the charge requires further
study.

Finally, it may be advisable to issue as separate complete working

reports the results of Sections 1, 2, 3, and 4.
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APPENDIX A
DISPLACEMENT VECTOR FIELD OF A RIGID BODY

This appendix presents a derivation of the displacement vector
field of 1 rigid body that undergoes an angular displacement X about an axis
A with direction U relative to given rectangular coordinates (&,n,z). The
axis A is conveniently taken to pass through the origin O (Figure A-1).

A particle P of the body describes a circular arc C of radius a,
whose plane is perpendicular to axis A, and whose center M is on axis A.
The displacement vector q of particle P may be resolved into components El
and 455 such that q is tangent to circle C at the initial point P, and q,
is parallel to the radius MP. The radius vector OP is denoted by p.

By Figure A-1, it can be seen that |v x pl| = a, where the
notation |V x p| denotes the magnitude of the vector v x p. Also, v X )
has the direction of E{l. Consequently,

q; = v x psiny
The magnitude of q, is

q, = a(l - cosy)

The direction of 21_2 is that of the vector v x (v x p). Also, |V x o x o =

a. Therefore,

Eiz =9 x (O x P - cosy)

Since the displacement vector of particle P is q = Z{l + EZ’
q = v x Psinx + v x (V x p)(1 - cosy) {(A-1)

The vector triple product in Eq. (A-1) may be expanded by means
of the identity

O
1
O
>
.
=]

Ax(BxC =BA



Figure A-1. Angular Displacement of Rigid Body
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The particle P is displaced from position p to the position R = p + q.
Consequently,

R = v x psiny + pcosy + W + p(l - cosy)
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APPENDIX B
MOMENTUM PRINCIPLES

An arbitrary mechanical system is referred to a Galilean reference
frame. The momentum of the system is

G = jvam
where Vv is the velocity of the mass particle dm, and the integral extends

throughout the system (Figure B-1). Also, v = dr/dt, where r is the radius
vector from the origin O to particle dm (Figure B-1)., Consequently,

= d |-

G = It Irdm
Furthermore,

];dm - nF,

where m is the mass of the entire system, and ?b is the radius vector from
point O to the center of mass of the system. Therefore,

—

- dr, —
G=m—g==mv, (B-1)

—

where Yo is the velocity of the center of mass of the system.
The angular momentum of the system about point O is2

Ho = Jr X vdm

Likewise, the angular momentum of the system about another point P is

H = |p xvd
p Ip X vem

2H. L. Langhaar and 4. P. Boresi, Engineering Mechanics-Dynamics (U), Melraw-
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Hill, New York, 1959, Art. 15-10.
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Figure B-1. Arbitrary Mechanical System
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;i where 0 is the vector from point P to the mass particle dm. By Figure B-1,
- r =D+ pwhere D is the vector OP. Consequently,
Pﬁf ﬁp = J(; - B) x vdm = J;'x vdm - Bk[?ﬂm
Therefore,
Hp = HO -DxG (B-2)

Equations (B-1) and (B-2) yicld

23 HP = HO - mD x Yo (B-3)
i Equation (B-3) sorves to transfer the angular momentum from one reference

e point 0 to another reference point P,

) If the system is free from external force, ﬁb and G are constant
?§ vectors, Then, by Eq. (BR-2), Hb is a constant vector, 1In particular, if

Fl ﬁb =0 and G = 0, it follows that ﬁb = 0, where P is any point.
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APPENDIX C
REMARKS ON VECTOR ANALYSIS

In this Appendix, a brief treatment of vector analysis is
presented. For more details, see Reference 2, Chapters 1, 6, 8 and 15,
In this report, a letter with a bar over it denotes a vector. for example,
F stands for the direction and magnitude of a force, although it does not

signify the point at which the force acts., Ordinarily, the point of action |
of a force is designated by a statement. By definition, the letter F
represents* only the magnitude of vector F, Consequently, F is a non-
negative number. A lettef with a caret over it denotes a vector of unit i

magnitude, For example, F designates the direction of force F,

The vector equation A - B signifies that vectors A and B have
the same magnitude and the same direction, but not necessarily the same
point of action. The vector -F is defined to have the same magnitude as
vector F, but the opposite direction. The vectors T and -F need not have
the same point of action, For example, if F denotes a force that acts on a
body, the reaction of the force is -F,

If k is a positive number, the product kF is defined to be a
vector with the direction of ¥, and with magnitude kF. If k is a negative

number, the product k¥ is defined to be a vector with the direction of -F,
and with magnitude |k|F, where |k| is the absolute value of k., In view of
these definitions, T = FF.

The resultant F of two vectors Fl and ?é is called the sum of the
vectors. The process of obtaining the sum or resultant of two vectors by

the well-known parallelogram construction is called vector addition.

Symbolically, T = Fl + ?& = Fz + F}. It is to be observed that the relation

F=F +'Fz does not imply that F = Fl + FZ' In general, Fl + F2 is greater

1
than F, since the three vectors F, Fio Fz form the sides of a triangle.
By repecated applications of the parallelogram construction, one

obtains the polygon construction for the sum of a number of vectors. For
example, if forces Ti, Fé, ﬁs, ﬁa act at a point P of a body, their

resultant T is obtained by arranging the vectors ?i, Fz, Fs, Fa in a chain,

* B - . o -
This convention is not always used in this report. For example, M denotes
the moment of a force, but M stands for the mass of the gqun. No confusion
should occur, since notations are explained.
PREVIOUS PAGE @
1S BLANK
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maintaining the proper directions of the vectors. Then the line segment
from the initial point P to the terminal point of the chain represents the

resul” .nt force, Figure C-1. Symbolically, F = ?i + ?é * Fs + Fa. Vector

sddition is commutative and associative; i.e., the order of vectors F,, fé,

F3, ?A in the polygon is irrelevant, and any subset of the vectors in the
polygon may be replaced by their resultant. Symbolically, this means that
the vectors in the sum F, + F

1 2
parentheses may be introduced arbitrarily in the sum.

+ Fs + F, may be permuted in any way, and

Subtraction of a vector is defined to be addition of the negative
vector, i.e., A - B = A + (-B). Accordingly, to subtract a vector B from a
vector A, we reverse the direction of B, and add the reversed vector to A.

A direction can be defined only with respect to some reference
frame. Consequently, vector analysis cannot be entirely divorced from
coordinate systems. For definiteness, only right-handed systems of coordi-
nates are considered. “f (x,y,z) is a right-handed system of rectangu®
coordinates, the thumb, the forefinger, and the middle finger of the right
hand can be directed in the positive senses along the x, y, and z axes,
respectively. Frequently it is convenient to designate the directions of
rectangular coora.nate axes (X,y,z) by three unit vectors (i,;,ﬁ) that
coincide in direction with these axes, Figure C-2. Then the position vector
R from the origin to the point P:(x,y,z) satisfies the vector equation,

R = ix + gy + kz (C-1)

The orthogonal projections (FI’FZ’FS) of any vector F on the axes (x,y,z)
satisfy the equation

F = iF, + jF, + k¥, (C-2)

Addition and subtraction of vectors, and multiplication of vectors
by scalars conform to the axioms of elementary algebra. Consequently,
cert sjperations with vectors can be performed as in scalar algebra. For

exanyple, alzebraic reduction of the vector equation

F=3[A-2(B -A) + 57 - 78]
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Figure C-1. Resultant Force F
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Figure C-2. Resolution of Vector into Components Parallel to Coordinate Axes
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yields F =247 - 27B .

The angle between a vector and a cartesian coordinate axis is
called the direction angle of the vector with respect to the coordinate
axis. The three direction angles (a,8,Y) of a vector with respect to three
rectangular cartesian axes (x,y,z) determine the direction of the vector,
Figure C-3. The direction angles of a vector are specified to lie in the
range 0° to 180°, inclusive. Consequently, a direction angle is determined
uniquely by its cosine. If the cosine is negative, the angle is greater

than 90°. The cosines of the direction angles of a vector are called the

direction cosines of the vector.
If (a,B,Y) are the direction angles of a vector F, and if F
denotes the magnitude of F,

= Fcos B , F, = Fcosy (C-3)

F1 = Fcosa , F z

2

A direction in space may be designated by a unit vector. If F is a unit
vector, F = 1. Accordingly, Eq. (C-3) shows that the orthogonal projections
of a unit vector on the x, y, and z axes are identical to the direction
cosines of the vector.

By trigonometry,

F-=F."+F ~“+F (C-4)

Equations (C-3) and (C-4) yield
cosZu + cosZB + coszY = 1 (C-5)
Let A and B be two vectors whose projections on rectangular

cartesian axes (x,y,z) are (AI’AZ’AS) and (81,82,83). The expression
AlB1 + Asz + A383 is called the scalar product (or dot product) of the

two vectors. This expression is conventionally denoted by A « B. It is
seen by this definition that A « B = B - A. Accordingly, scalar multiplica-
tion of vectors is said to be commutative. The importance of the scalar

product arises fror a geometric identity that is expressed by the equation,
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A+B = AjB, + AB, + AB, = ABcosd (C-6)
where A and B are the magnitudes of vectors A and B, and 6 is the angle
between these vectors.

Several special cases are to be noted. If A = B, Eq. (C-6) yields
A% - A12 + A22 + A32, which is equivalent to Eq. (C-4). If B is a unit vec-
tor (B = 1), it is apparent from Eq. (C-6) that A * B is the orthogonal
projection of vector A on a line with the direction and sense of vector B.
If A and B are both unit vectors, their projections on the (x,y,z) axes are

identical to their direction cosines. Hence,
cos @, cos 0., + cos Bl cos 62 *+ cos y,; cos Y, = cos 6 (C-7)

where (al,Bl,yl) and (az,Bz R yz) are the direction angles of vectors A and
B, and 0 is the angle between these vectors. If A # 0 and B # 0, but
A+ B =0, vectors A and B are perpendicular to each other (8 = 90°).
Occasionally an expression of type A(B * C) arises. The
parentheses may be removed; i.e.,
AB+C =AB«CT
There is no ambiguity in the expression A B » C, since no meaning is here
assigned to the expression A B standing alone. Hence, AB ¢« C is a vector
with the direction of vector A and with magnitude ABCcos 6 , where 6 is the
angle between vectors B and C.
Another expression that sometimes arises is

AN —_— —
A

i A+3] «A+kk R

Since the (x,y,z) components of A are A = i+A A, =3k and A, =k « A&,

this reduces to

1A1+ JA2+kA3=A
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Direction Angles of a Vector

Figure C-4. Moment of Force, M =1r x F
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5“3 /:;'\ — A;: -— AN — -—

E ii » A+ 3jj cA+ Kk A=A (C-8)

N This relation is an identity.

"

- By cartesian expansion, it is easily seen that

A+ (B+0) =R+B+A-C

L
PN
-
.
i

Since also A * B = B + A, the scalar product conforms to the rules of

elementary algebra.

From two given vectors, A and B, a third vector C may be derived
by the definition,

C1=A233-A382 s C2=A331—P123, C, =AB_ -~ A_B (c-9)

This may be expressed concisely in determinant notation:

i 5 %
CT= A A, A, =KxB (C-10)
: B, B, By

The vector C is called the vector product or cross product of A and B. It

. may be shown by geometry that the magnitude of C is
“ C = ABsin® (C-11)

where 6 is the angle between vectors A and B. it follows from Eq. (C-9) that
Ce A=C =+ B=0. Consequently, vector C is perpendicular to both of the
vectors A and B. It can be shown that, if the coordinates (x,v,z) are
: right-handed, the sense of vector C is that in which a right-hand screw
advances when turned from A to B.
The vector product is not commutative. Since a permutation of

{ two rows in a determinant changes the sign of the determinant, Eq. (C-10)
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shows that B x A = -A x B, 1In spite of this anomalous behavior, the vector
product has other properties in common with ordinary multiplication. In
particular,
(C-12)
Hence,
(A+B) x(C+D) =AxC+AxD+BxC+BxD

It is seen from Eq. (C-11) that the vector product of two parallel vectors

is zero, since € = 0. Hence,

>
>
>
"
.y
”
Cde )
I
x>
%
=
]
(o]

Also, by Eq. (C-10)

i j k
ixj=1 0 0 =k
0 1 o
Similarly, k x i-= 3 and 3 xk =1 Evidently,

=i
”
=
n

(1A1 + JAZ + ﬁAS) X (1B1 + jB2 + kBS)

Algebraic expansion of the right side of this equation leads back to
Eq. (C-9).

The expression A ¢ (B x C) is called the scalar triple product.

It may be written without parentheses as A * B. x G, since (A * B) x C has
no meaning. The expression A * B x C is a scalar. Cartesian expansion
yields the determinant form,
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1 "2 %3
R-BxCT=8 B, B (C-13)
c, C G

Since a transposition of two rows in a determinant merely changes the sign of
the determinant,

A*BxC=B-CxA=C+*AxB (C-14)
The absolute value of A « B x C represents the volume of the parallelepiped

having concurrent edges represented by A, B, and C.

The vector triple product is A x (B x C). The parentheses are

essential in this expression. By cartesian expansion, the following identity
can be verified:

Ax(BxC =BA<C-CA-+B (C-15)

This may be memorized as the "Back-Cab' formula.

The vector product is useful for representing moments of forces.
Let a be the perpendicular distance from a given point O to the line of
action of a given force F, Figure C-4, The moment of force F about point O
is defined to be a vector M with magnitude Fa. The vector M is defined to be
perpendicular to the plane determined by the force F and point O. The sense
of vector M is defined by the right-hand-screw rule; i,e., vector M points in
the direction that a right-hand screw would advance if force F should cause
it to turn about an axis through point 0. For the case illustrated by
Figure C-4, vector M is directed toward the reader, perpendicular to the
plane of the paper. Let the vector OP (Figure C-4) be denoted by T. Then
the conditions of the preceding definition are fulfilled by the vector
equation,

=|
I
|
>
gl

(C-16)
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The moment of a force about an axis is a scalar. If fi is a unit
‘3 vector in the direction of axis L, the moment of force F about axis L is

% M = fi + M, where M is the moment of force F about any peint O on axis L.

\ .

Consequently, by Eq. (C-16),

i ML=F-ﬁx?=?~f«"xﬁ=ﬁ°?xF (C-17)
o An infinitesimal increment dR of a vector R need not be collinear

with the vector R, Figure C-5. Consequently, in general, the vector R + dR
u differs from the vector R, not only in magnitude, but also in direction.

It would be misleading to denote the magnitude of vector dR by dR, since dR
denotes the increment of the scalar R. Accordingly, the magnitude of dR is
denoted by |dR|, or by another symbol, such as ds. The magnitude of the
vector R + dR is R + dR. Figure C-5 shows that dR < |dR|. If the vector R
is a function of a scalar t (where t may or may not denote time), dR/dt is

defined to be a vector in the direction of dR with magnitude ds/dt, where

.-":.’“ oaie

. ds = |dR|. If R is the position vector of a particle, and if t denotes

N time, v = dR/dt is the velocity of the particle and dv/dt = dzi/dt2 is the
acceleration of the particle. Vectors obey the same rules of differentiation
as scalars. This may be shown by the delta method that is used for deriving
differentiation formulas in scalar calculus. For example, if Q = uR, where

u is a scalar function of t and R is a vector function of t,

» in which the dot denotes the derivative with respect to t. Likewise,

d — - - - L
d—E(A B) B+A-*B

sl

and d¥‘t—(7\-x§)=7\'x§'+ix§

The angular velocity w of a rigid body is a vector quantity. For,

let w represent the angular velocity of a rigid body whose motion at the
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Figure C-5. Infinitesimal Increment dR

Figure C-6. Velocity v =w x r
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instant under consideration is a rotation about an axis L. Let T be the
vector from any point O on axis L to a particle P of the body (Figure C-6).
The distance of particle P from the axis of rotation is rsin6 , where 6 is
the angle between the vectors r and w. Hence, the speed of particle P is
rwsin 8. The velocity Vv of particle P is perpendicular to the plane of
vectors T and », and its sense is determined by the right-hand-screw rule

(if right-handed coordinates are used). Therefore,

V=wxr (C-18)




IO Ty

No,

12

DISTRIBUTION LIST

of

Organization

Administrator

Defense Technical Info Center
ATIN: DTIC-DDA

Cameron Station

Alexandria, VA 22314

Director

Defense Advanced Research
Projects Agency

1400 Wilson Boulevard

Arlington, VA 22209

Director
Defense Nuclear Agency
ATTN: STS?

STTI

STRA
Washington, DC 20305

Commander

US Army Materiel Development
and Readiness Command

ATTN: DRCDMD-ST

5001 Eisenhower Avenue

Alexandria, VA 22333

Conmander

US Army Aviation Research
and Development Command

ATTN: DRDAV-E

4300 Goodfellow Blvd.

St. Louis, MO 63120

Director

US Army Air Mobility Research
and Development Laboratory

Ames Research Center

Moffett Field, CA 94035

Director
US Army Air Mobility Research
and Development Laboratory
ATTN: Dr. Hans Mark
Dr. Richard L. Cohen
Ames Research Center
Moffett Field, CA 94035

No.

2

of

Organization

Director

US Aray Research and
Technology Laboratories
(AVRADCOM)

Ames Research Center

Moffett Field, CA 94035

Commander

US Arnmy Communications Research
and Development Command

ATTN: DRDCO-PPA-SA

Fort Mommouth, NJ 07703

Commander

US Army Electronics Research
and Development Command

Technical Support Activity

ATTN: DELSD-L

Fort Monmouth, NJ 07703

Commander
US Army Harry Diawmond Laboratorics
ATTN: DELHD-I-TR, H.D. Curchak
H. Davis
DELHD-S-QE-ES, Ben Banner
2800 Powder Mill Road
Adelphi, MD 20783

1 4

Commander

US Army Harry Diamond Laboratories
ATTN: DELHD-TA-L

2800 Powder Mill Road

Adelphi, MD 20783

Commander

US Army Missile Command
ATTN: DRSMI-AOM

Redstone Arsenal, AL 35898

Director
Night Vision Laboratory
Fort Belvoir, VA 22060

Commander

US Army Missile Command
ATTN: DRSMI-R

Redstone Arsenal, AL 35848




DISTRIBUTION LIST

No. of No. of
Copies Organization Copies Organization
1 Commander 5 Commander
US Army Missile Command USA ARRADCOM
AT'TN:  DRSMI-RBL AT''N: DRDAR-SC
Redstone Arsenal, Al 35898 DRDAR-LC, J.T. Frasier
DRDAR-SE
1 Commander DRDAR-SA, COL R.J. Cook
o US Army Missile Coumand DRLAR-AG, LTC S.W. Hackley
SO ATTN: ~DRSHI-YDL Dover, NJ 07801
SN Redstone Arsenal, AL 35898
L 5 Commander
- 1 Commander USA ARRADCOM
! US Army BMD Advanced ATTN: DRDAR-SCS, Mr. D. Brandt
Ny Technology Center DRDAR-SCS-E, Mr, J. Blumer
o ATTN: BMDATC-M, Mr. P. Boyd DRDAR-SCF, Mr. G, Del Coco
R P.O. Box 1500 DRDAR-SCS, Mr. S. Jacobson
o Huntsville, AL 35804 DRDAR-SCE, Mr. K. Pfleger
55 Dover, NJ 07801
e 1 Commander
o US Army Materiel Development 2 Commander
0 and Readiness Command USA ARRADCOM
L ATTN: DRCLDC, Mr. T. Shirata ATTN: DRDAR-TSS
.. 5001 Eisenhower Aveaue Dover, NJ 073801
Alexandria, VA 22333
3 Commander
1 Commander USA ARRADCOL
US Army Materiel Development ATTN:  DRDAR-TDC
and Readiness Command DRDAR-TDA
ATTN: DRCDE, Dr. R.H., Haley DRDAR-TDS
Deputy Director Dover, NJ 07801
5001 Eisenhower Avenue
L Alexandria, VA 22333 6 Commander
s USA ARRADCOM
-0 1 Commander ATTN: DRDAR-LCU, Mr. E. Barrieres
“at US Army Materiel Development DRDAR-LCU, Mr. R. Davitt
L and Readiness Command DRDAR-LCU-M, Mr. D. Robertson
@ ATTN: DRCDE-R DRDAR-LCU-M, My, J. Sikra
Ok 5001 Eisenhower Aver.e DRDAR-LCU-M, Mr, M. Weinstock
s Alexandria, VA 22333 DRDAR-LCA, Mr. C. Larson
i Dover, NJ 07801
o 1 Commander
X9 US Army Materiel Development 4 Commander
@ and Readiness Command USA ARRADCOM
A ATTN: Mr. Lindwarm ATIN: DRDAR-LCA, Mr. B. Knutelski
Rﬁw 5001 Eisenhower Avenue DRDAR-LCR-R, Mr. E.H. Moore Il1
; Alexandria, VA 22333 DRDAR-LCS, Mr. J. Gregovits
s DRDAR-1.CS-D, Mr., Kenncth Rubin
) Dover, NJ 07801




g m™yr o [

f ,,a o

.w L o
L

No. of
Copies

7

(2

DISTRIBUTION LIST

No. of
Organization Copies Organization
Commander 3 Divector

USA ARRADCOM

ATIN:  DRDAR-SCA, (C.J. McGer
DRDAR-SCA, S. Goldstein
DRDAR-SCA, F.P. Puzychki
DRDAR-SCA, E. Jeeter
DRDAR-SCF, B. Brodman
DRDAR-SCF, M.J. Schmitz
DRDAR-SCF, L. Berman

Dover, NJ 07801

Commandex

USA ARRADCOM

ATTN: DRDAR-SCM
DRDAR-SCM, Dr, E. Bloore
DRDAR-SCM, Mr. J. Mulherin
DRDAR-SMS, Mr. B. Brodman
DRDAR-SCS, Dr. T. Hung
DRDAR-SCA, Mr. W. Gadomski
DRPAR-SCA, Mr. E. Malatesta

Dover, NJ 07801

Commander

USA ARRADCOM

ATTN: DRDAR-LCA, Mr,
DRDAR-LCA, Mr,
DRDAR-LCA, Mr,

Dover, NJ 07801

. Williver
. Bernstein
. Demi.track

cWw=E

Commander

USA ARRADCOM

ATTN:  DRDAR-LCA, Dr, S. Yim
DRDAR-LCA, Mr. L. Rosendorf
DRDAR-LCA, Dr. S.ll. Chu
DRDAR-ICW, Mr. R. Wremn

Dover, NJ 07801

~w

Director

USA ARRADCOM

Benet Weapons Laboratory

ATTN: DRDAR-LCB-TL, Mr. Rummel
DRDAR-LCB-TT,

Watervliet, NY 12189

o

USA ARRADCOM

Benet Weapons Luaboratory

ATTN: DRDAR-LCB, Dr. T. Simkins
DRDAR-LCB, Dr. J. Zweig

Dr. . W

Wavervliiet, NY 12189

Commander

USA ARRADCOM

ATTN: DRDAR-SC, Mr. B. Shulman
DRDAR-SC, Mr. Webster

Dover, NJ 07801

Commander

USA ARRADCOM
ATTN: DRDAR-SE
Dover, NJ 07801

Commander

USA ARRADCOM

ATTN: Army Puze Mgt Project Office
DRDAR-TU

Dover, NJ 07801

Conmander

USA ARRADCOM

ATTN: Developuent Project Office
for Selected Ammunitions
DRDAR-DP

Dover, NJ 07801

Conmander

USA ARRADCOM

ATIN: Product Assurance Directorate
DRDAR-QA

Dover, NJ 07801

Conmander

USA ARRADCOM
ATTN: DRDAR--NS
Dover, NJ 07801

Commander

USA ARRADCOM

ATTN: L. Goldsmith
Dover, NJ 07801



W,
Pt
T
8 *
.

<
0
",
-
o)
»
-
«

e

NP SRR

No.

Cogies

1

|3

DISTRIBUTION LIST

of
Organization

Commander

S Army Rock Island Arsenal

ATTN: DRDAR-TSE-SW, R. Radkiewicz
Rock Island, IL 61299

Commander

US Army Armament Materiel
Readiness Command

ATTN: DRDAR-LEP-L

Rock Island, IL 61299

Commander

US Army Missile Command

ATTN: DRCPM-RK

2.75 Rocket Division

Redstone Arsenal, AL 35898

Commander

US Army Missile Command

ATTN: DRCPM-TO; HELLFIRE/GLD Off
DRCPM-HD, R. Masucci

Redstone Arsenal, AL 35898

Commander

US Army Mobility Equipment
Research § Development Command

Fort Belvoir, VA 22060

Project Manager

Cannon Artiliery Weapons System
ATTN: DRCPM-CAWS

bover, NJ 07801

Commander
US Army Natick Reseavca

and Development Command
ATTN: DRDNA-DT, Dr. Siecling
Natick, MA 01762

Commander
US Army Tank Automotiv
and Development Comman
DRDTA-UL
Technical
Warren, MI

“escarch

ATTN:
“irector
48040

No. of

Copies

3

Organization

Commander
US Army Tank Automotive Research
and Development Command
ATTN: DRDTA-RH, Dr. W.F. Banks
DRDTA, Dr. E. Patrick
Dr. Jack Parks
Warren, MI 48090
Director
US Army TRADOC Systems
Analysis Activity

ATTN: ATAA-SL, Tech Lib

White Sands Missile Range, NM 83002
President

US Army Armor and Engineer Board
ATTN: ATZK-AE-CV

ATZK-AE-IN, Mr. Larry Smith
Fort Knox, KY 40121

Commander

US Army Research Office

ATTN: COL L. Mittenthal
Dr. E. Saibel

P.O. Box 12211

Research Triungle Park

NC 27709

Commande:

US Army Re .earch Oftice

P.0. Box i:2,1

ATTN: Technical birector
Errzineering Division
Metallurgy & Materials
Division

Research Triangle Park, NC 27709

Commander

US Army Research Office

ATiN- Dr. J. Chandra

Research Triangle Park, NC 27709




DISTIBUTION LIST

No. of
Copies Organization
2 Project Manager

Nuclear Munitions
ATTN: DRCPM-NUC
Dover, NJ 07801

Project Manager

Tank Main Armament Systems
ATTN: DRCPM-TMA

Dover, NJ 07801

Project Manager
Division Air Defense Gun
ATTN: DRCPM-ADG
Dover, NJ 0780l

Product Manager for 30mm Ammo.
ATTN: DRCPM-AAH-30mm
Dover, NJ 07801

Product Manager

M110E2 Weapon System, DARCOM
ATTN: DRCPM-M110E2

Rock Island, IL 61299

Director
US Army Mechanics and
Materials Research Center
ATIN: Director (3 cys)
DRXMR--ATL (1 cy)
Watertown, MA 02172

Tomnander
S Aray Materials and
Mechanics Research Center
JIN:  J. Me:icall
Tech. Library
Watertown, MA 02172

Comnaider
US Army Training and
Doctrine Comnand
ATTN: TRADOC Lib, Mrs. Thomas
Fort Monroe, VA 23651

Commander
US Army Air Defease (Center
ATTN:  ATSA-CD A

Bldg. SRIG
Ft. Rliss TX

7¢Ole

No. of
Copies Organization
1 Commander
Naval Air Systems Command
ATTN: AIR-604

Washington, DC 20360

Commander

Naval Sea Systems Command
ATTN: 3EA 9961
Washington, DC 20362

Commander
Naval Sea Systems Command
Washington, DC 20362

Commander

Naval Sea Systems Command

ATTN: SEA-62R, John W. Murrin
SEA-62Y, John Carroll

Washington, DC 20362

Commander

Naval Sea Systems Command
(SEA-03513)

ATTN: L. Pasiuk
Washington, DC 20362

Commander
Naval Research Laboratory
Washington, DC 20375

Commander
Naval Ship Engineering Center
Washington, DC 20362

Superintendent

Mevel Postgraduate School
ATTN: Dir of Lib
Montewreys. CA 93940

Commander
Naval Air Develepment Ceater
dohnsville

Wacminster, FA 184974

FEN

9




...........

DISTRIBUTION LIST

,%E No. of No. of
o Copies Organization Copies Organization

1 Commander 2 (Commander

Ry '.|
wsd

David W. Taylor Naval Ship
Research § Development Center
Bethesda, MD 20084

Commander
Naval Research Laboratory
ATTN: Mr. W.J. Ferguson
Dr. C. Sanday
Dr. H. Pusey
Washington, DC 20375

Commander

Naval Surface Weapons Center
ATTN: G-13, W.D. Ralph
Dahlgren, VA 22448

Commander
Naval Surface Weapons Center
ATTN; Code X211, Lib
E. Zimet, R13
R.R. Bernecker, R13
J.W. Forbes, R13
S$.J. Jacobs, RI10
K. Kim, R13
Silver Spring, MD 20910

Commander
Navsl Surface Weapons Center
ATIN: Code E-31, R.C. Reed
M.T. Walchak
Code V-14, W.M, Hinckley
Silver Spring, MD 20910

Commander
Naval Surface Weapons Center
Silver Sprirg, MD 20910

Commander
Naval Surface Weapons Center
ATTN: <Code G-33, T.N. Tschirn
Cede M-43, J.J. Yagla
L. Anderson
G. Soo Hoo
Code TX, Dr. W.G. Soper
Jihlgren, VA 22448

86

(¢S]

Naval Weapons Center
China Lake, CA 93555

Commander
Naval Weapons Center
ATTN: J. O'Malley

D. Potts
China lLake, CA 93555

Commander

Naval Weapons Center

ATTN: Code 3835, R. Sewell
Code 3431, Tech Lib

China Lake, CA 93555

Commander
Naval Weapons Center
ATTN: Code 1057
Cod: 3835 B. Lundstrom
Code 3835 M. Backman
China Lake, CA 93555

Commander
Naval Ordnance Station
Indian Head, MD 20640

Commander

Naval Ordnance Station

ATTN: Code 5034, Ch, Irish, Jr.
T.C. Smith

Indian Head, MD 20640

Office of Naval Research

ATTN: Code ONR 439, N. Perrone
Department of the Navy

800 North Quincy Street
Arlington, VA 22217

Commander
Marine Corps Development
amd Education Command (MCDEC)
ATTN: C(Class Ctl Ctr
Quantico, VA 22134




T G

w WLy

DISTRIBUTION LIST

No. of
Copies Organization
2 AFRPL
ATTN: W. Andrepont

T. Park
Edwards AFB, CA 93523

AFOSR
Bolling AFB, DC 20332

AFATL

ATTN: W, Dittrich; pLJM
D. Davis; DLDL

Eglin AFE, FL 32542

ADTC/DLODL, Tech Lib
Eglin AFB, FL 32542

AFWL/SUL .

Kirtland AFB, NM 87115
AFWL/SUL

ATTN: Jimmie L. Bratton

Kitland AFB, NM 87115

New Mexico Institute of Mining
and Technology

Terra Group

Socorro, NM 87801

AFML (Dr. T. Nicholas)

Wright-Patterson AFB, OH 45433

8

ASD (XROT) Gerald Bennett;
ENFTV, Martin Lentz

Wright-Patterson AFB, OH 45433

No.

Copies

1

(93

of
Organization

U.S. Department of the Interior

Bureau of Mines

Pittsburgh Technical Support
Cenver

ATTN: Dr. S.G. Sawyer

Pittsburgh, PA 15213

Battelle Pacific Northwest Lab
ATTN: Dr. F. Simonen
Mr. E.M. Patton
P.0. Box 999
Richland, WA 99352

Director
Lawrence Livermore Laboratory
Livermore, CA 94550

Director

Lawrence Livermore Laboratory
AT'N: D. Burton, L200

P.0. Box 808

Livermore, CA 94550

Director
Los Alamos Scientific Laboratory
P.O. Box 1663

Los Alamos, NM 87544

Director

Lawrence Livermore Laboratory
ATTN: E. Farley, L9

P.0. Box 808

Livermore, CA 94550

Director

Lawrence Livermore Laboratory
Dr. R.H. Toland, L-424
Dr. M.L. Wilkins

Dr. R. Werne
Livermore, CA 94550

ATTN:



-as [P P a0 o o
L R -__"y'_."_-z".;’_f_".a:. LT

3

“n
~
N
™

.......
wwT AT Wt RN LT T

........

DISTRIBUTION LIST

No. of No. of
Copies Organization Copies Organization
1 Director 1 Director

National Aeronautics & Space Adm
Langley Research Center

Langley Station

Hampton, VA .23365

Headquarters

National Aeronautics and
Space Administration

Washington, DC 20546

Sandia Laboratories
P.0. Box 5800

Albuquerque, NM 87187
Director

Jet Propulsion Laboratory
ATIN: Lib (TD)

4800 Oak Grove Drive
Pasadena, CA 91103

H. P. White Laboratory
3114 Scarboro Road
Street, MD 21154

DuPont Experimental Labs
Wilmington, DE 19801

Materials Research Laboratory, Inc,

1 Science Road
Glenwood, IL 60427

Princeton Combustion Research
Laboratories, Inc.

ATTN: Prof. M. Summerfield, Pres.

1041 U.S. Highway One North

Princeton, NJ 08540

Director

National Aeronautics and
Space Administration

Langley Research Center

Langley Station

Hampton, VA 23365

88

National Aeronautics and
Space Administration
Manned Spacecraft Center

ATTN: Library
Houston, TX 77058

Director

NASA - Ames Research Center
ATTN: Tech Lib

Moffett Field, CA 94035

Aeronautical Research Association
of Princeton, Inc.

50 Washington Road

Princeton, NJ 08540

Forrestal Research Center
Aeronautical Engineering Lab
Princeton liniversity

ATTN: Dr. Eringen
Princeton, NJ 08540

Northrup Norair
3901 W. Broadway
Hawthorne, CA 90250

Northrop Corporation

Northrop Research § Technology Center
ATTN: Library

One Research Park

Palos Verdes Peninsula, CA 90274

DNA Information § Analysis Center
Kaman TEMPO

ATTN: W. ChHan

816 State Street

P.0. Drawer QQ

Santa Barbara, CA 93102

Aerospace Corporation
ATTN: Mr. L. Rubin
Mr. L.G. King
2350 E. El1 Segundo Boulevard
El Segundo, CA 90245



\d
a A%

-

€“op tavt .3

DISTRIBUTICN LIST

No. of
Copies Organization
1 Aerospace Corporation

ATTN: Dr. T. Taylor
P.0. Box 92957
Los Angeles, CA 90009

Aircraft Armaments Inc.
ATTN: John Hebert

York Road § Industry Lane
Cockeysville, MD 21030

ARES Inc.

ATTN: Duane Summers
Phil Conners

Port Clinton, OH 43452

ARO, Inc.

Arnold AFB, TN 37389

BLM Applied Mechanics Consultants
ATTN: Dr. A, Boresi

3310 Willett Drive

Laramie, WY 82070

Boeing Aerospace Company
ATTN: Mr. R.G. Blaisdell
(M.S. 40-25)

Seattle, WA 98124

CALSPAN Corporation
ATTN: E. Fisher
P.0. Box 400
Buffalo, NY 14225

Computer Code Consultants inc.
1680 Camino Redondo

Los Alamos, NM 87544

Effects Technology, Inc.
5383 Hollister Avenue
P.0. Box 30400

Santa Barbara, CA 93105

Falcon R§D Company
ATTN: L. Smith

R. Miller
109 Inverness Dr., East
Denver, CO 80112

89

No. of
Copies Organization
1l Falcon R&D Company

Thor Facility

696 Fairmont Avenue
Baltimore

MD 21204

FMC Corporation
Ordnance Engineering Division
San Jose, CA 95114

General Electric Company
ATTN: H.J. West

J. Pate
100 Plastics Avenue
Pittsfield, MA 01203

General Electric Company
ATTN: H.T. Nagamatsu
1046 Cornelius Avenue
Schenectady, NY 12309

Kaman - TEMPQ

715 Shamrock Road
ATIN: E. Bryant
Bel Air, MD 21014

General Electric Company

ATTN: Armament Systems Department
David A. Graham

Lakeside Avenue

Burlington, VT 05402

President

General Research Corporation
ATTN: Lib

McLean, VA 22101

Goodyear Aerospace Corporation

1210 Massillon Road
Akron, OH 44315

J.D. Haltiwanger
Consulting Services
B106A Civil Engineering Building
208 N. Romine Street
Urbana, IL 61801




ey
4 P

" EE PR PD 0K s id
VRGN A
'T“n‘r_x‘r‘._'l'., . .

14
B

‘
L

Lt ot 0 Lok
P

v

T

b 4
AT

P e i i i
i aEh e
’ ra

a0

ot

ARY ST ZE AL A
e . W

 pikie tign SRR JIEH) Y4 S
LR I TRRRER Y L
.
o
.
.

No.

1

DISTRIBUTION LIST

of
Copies

Organization

Hercules Inc,

Industrial Systems Department
P.0O. Box 548

McGregor, TX 76657

Honeyweil. Inc.
Government § Aerospace Products
Division
ATTN: Mr. J. Blackburn
Dr. G. Johnson
Mr. R. Simpson
600 Second Street, NE
Hopkins, MN 55343

Hughes Helicopters

ATTN: Security Officer
Centinela § Teale Streets
Culver City, CA 90230

Kaman® Nuclear

ATTN: Dr. P. Snow

1500 Garden of the Gods Rodd
Colorado Springs, CO 80933

Lockheed Corporation
ATTN: Dr. C.E. Vivian
Sunnyvale, CA 94087

Lockheed Huntsville

P.O. Box 11G3
Huntsville, AL 35809

Martin Marietta Aerospace
Orlando Division

P.0. Box 5837

Orlando, FL 32805

McDonnell Douglas Astronautics
ATTN: Mail Station 21-2
Dr. J. Wall
5301 Bolsa Avenue
Huntington Beach, CA 92647

90

No. of
Copies Organization
1 Pacific Technical Corporation

ATTN: Dr. P.K. Feldman
460 Ward Drive
Santa Barbara, CA 93105

Science Applications, Ingc.
ATTN: G. Burghart

201 W. Dyer Road (Unit B)
Santa Ana, CA 92707

Physics International Company
ATTN: Dr. D. Orphal
Dr. E.T. Moore
2700 Merced Street
San Leandro, CA 94577

Rockwell International

Automatics Missile Syrtems Division
ATTN: Wayne T. Armburst

4300 E. 5th Avenue

Columbus, OH 43216

R§D Associates
P.0. Box 9659
Marina Del Rey
CA 90291

Science Applications, Inc.
101 Continental Blvd, Suite 310
El Segundo, CA 90245

Science Applications, Inc.
2450 Washington Avenue, Suite 120
San Leandro, CA 94577

Science Applications, Inc.
1710 Goodridge Drive

P.0. Box 1303

Mclean, VA 22102



iB

DISTRIBUTION LIST

No. of

Copies

1

Organization

Science Applications, Inc.
ATTN: Dr. Trivelpiece

1250 Prosvect Plaza
LaJolla, CA 92037

Systems, Science § Software
ATTN: Dr. R. Sedgwick
Ms. L. Hageman
P.0O. Box 1620
La Jolla, CA 92037

Teledyne Brown Engineering
ATTN: Mr. John H. Hennings
Cummings Research Park
Huntsville, AL 35807

S§&D Dynamics, Inc.
755 New York Avenue
Huntington, NY 11743

Southwest Research Institute
ATTN: P. Cox

8500 Culebra Road

San Antonio, TX 78228

Southwest Research Institute
Fire Research Station
ATTN: Robert E. White
T. Jeter
8500 Culebra Road
San Antonio, TX 78228

Souchwest Research Institute
Department of Mechanical Sciences
ATTN: Dr. U. Lindholm

Dr. W. Baker
8500 Culebra Road
San Antonio, TX 78228

SRI International
ATTN: Dr. L. Seaman
Dr. D. Curran
Dr. D. Shockey
333 Ravenwood Avenue
Menlo Park, CA 94025

91

No.

Copies

2

of
Organization

University of Arizona
Civil Engineering Department
ATTN: Dr. D.A. DaDeppo

Dr. R. Richard
Tucson, AZ 85721

Brigham Young University
Department of Chemical Engineering
ATIN: Dr. M. Beckstead

Provo, UT 84601

University of California
Lawrence Livermore Laboratory
ATTN: Dr. Wm. J. Singleton, L-9
P.0. Box 8C8

Livermore, CA 94550

Drexel University

Dept. of Mechanical Engineering
ATTN: Dr. P. C. Chou

32nd § Chestnut Sts.
Philadelphia

PA 19104

University of Dayton
University of Dayton

Research Institute
ATTN: S.J. Bless
Dayton, OH 454695

University of Delaware
Department of Mathematics
Department of Mechanical Engineering

ATTN: Prof. J. Vinson
*  Dean J. Greenfield
Newark, DE 19711

University of Denver

Denver Research Institute

ATTN: Mr. R.F. Recht

2390 South University Boulevard
Denver, CO 80210




T e AT T T

DISTRIBUTION LIST

No. of No. of
Copies Organization Copies Organization
1 University of Illinois 1 Virginia Commonwealth University

Aeronautical and Astronautical
Engineering Department

101 Transportation Bldg.

ATTN: Prof. A.R. Zak

Urbana, IL 61801

University of Illinois
Department of Mathematics
ATTN: Dr. Evelyn Frank
Urbana, IL 61801

University of Kentucky

Department of Computer Science
ATIN: Prof. Henry C. Thacher, Jr,
91F% Patterson Office Tower
Lexington, KY 40500

University of Maryland
Department of Physics
College Park, MD 20742

Towson State University
Dept. of Mathematics
Towson, MD 21204

North Carolina State University
Dept. of Civil Engineering
ATIN: Y. Horie

Raleigh, NC 27650

Princeton University

Forrestal Research Center
Aeronautical Engineering Laboratory
ATTN: Dr. Eringen

Princeton, NJ 08540

Stanford University

Stanford Linear Accelerator Center
ALAC, P.0O. Box 4349

Stanford, CA 94305

92

Dept. of Math Sciences
901 W. Franklin
Richmpnd, VA 23284

University of Wisconsin-Madison
Mathematics Research Center
ATTN: Dr. John Nohel

1225 wW. Davton St.
Madison, WI 53706

Aberdeen Proving Ground

Dir, USAMSAA
ATTN: DRXSY-D
DRXSY-MP, H. Cohen
DRXSY-G, E. Christman
DRXSY-0SD, H. Burke
DRXSY-G, R.C. Conroy
DRXSY-IM, J.C.C. Fine
Dir, USAHEL
ATTN: DRXHE, Dr. J.D. Weisz
A.H. Eckles, IIIl
Dir, USACSL, EA
ATTN: DRDAR- CLEB-PA
DRDAR-CLN, ‘Mr. W.
Cdr, USATECOM
ATTN: DRSTE-TO-F

Deel




USER _EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out
this sheet, fold as indicated, staple or tape closed, and place
in the mail. Your comments will provide us with information for
improving future reports.

1. BRL Report Number
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